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Chapter 1 

Introduction 

1.1 Overview 

The potential of aeroelastic tailoring methods involving laminated filamentary com- 

posite aircraft wing skins has recently been exploited for two primary purposes: 

1. Achievement of performance goals by causing changes in wing shape for specified 

aerodynamic loads. 

2. Elimination of instabilities, such as wing divergence, from otherwise desirable designs. 

Most tailoring efforts have centered around obtaining desired twisting and bending be- 

havior through careful choice of laminate stacking sequences. Such tailoring is possible 

because many different mechanical couplings can be induced in a laminate through the use 

of certain well-defined stacking sequence categories. 

Two recent and frequently cited design applications employing aeroelastic tailoring 

have been the HiMAT remotely piloted vehicle 111 and X-29 fighter plane design efforts. The 

HiMAT (Highly Maneuverable Aircraft Technology) aircraft, a 0.5 scale research vehicle, 

is an example of the use of aeroelastic tailoring to achieve a performance goal. In this 

case, design constraints required that the aircraft’s wings attain a certain twist in response 

to certain operational loads. The X-29, on the other hand, is an example of the use of 

aeroelastic tailoring to eliminate instabilities from an otherwise feasible design. The wings 

of the X-29 were tailored in such a way that the divergence inherent in the forward-swept 

wing was avoided [2]. 

It is important to note that, even though bending/twisting coupling is the interaction 

usually desired for aeroelastic tailoring applications, the [f50/35] 5 laminate used in the 

HiMAT aircraft exhibited all possible types of mechanical couplings. (See Chapter 2 for a 

discussion of all the different couplings.) Apparently, the analysis only included the effects 

of bending- and extension-twisting coupling, which might have accounted for some of the 

1 



test/analysis discrepancies discussed in [ 11. Such an omission is perhaps understandable, 

in light of the dearth of information regarding the analysis of laminates simultaneously 

possessing all the couplings present in the [f50/35]5 laminate. Almost all the literature 

found by the author deals with laminates in which one or more couplings are not present. 

It is therefore desirable to compile theoretical and experimental results dealing with such 

laminates. 

A second area which has received much attention is the practical use of laminated fil- 

amentary composites in the postbuckling range. Although metallic aircraft substructures 

having buckling loads within the operational load range of the aircraft have been in use 

for some time, composite aircraft structures have typically been designed by considering 

buckling to be synonymous with failure [3]. It has only been fairly recently that investiga- 

tors have shown that buckling need not be such a limitation, since considerable stiffness is 

often available at loads equal to many times the buckling load of a composite structure. 

(See, for example, [4] and [3].) Efficient use of this additional stiffness makes possible the 

design and construction of structures which are significantly lighter than metal structures 

of equivalent strength. 

The possible future use of lighter, buckled designs in aeroelastically tailored substruc- 

tures obviates the need for more complete information regarding both the pre- and post- 

buckling behavior of anisotropic composite laminates with bending-extensional coupling. 

Although considerable literature exists regarding postbuckling behavior of conventional 

orthotropic laminates, little is available which examines the postbuckling behavior of lam- 

inates like the [f50/35]5 laminate used in the HiMAT effort. 
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1.2 Review of Previous Pertinent Work 

Considcrable literature is available which documents analytical and experiment a1 work 

involving various subsets of the general anisotropic plate with bending-extensional cou- 

pling. Leissa has presented a collection of such work [5],  both analytical and experimental. 

and so it will not be discussed here. 

1.2.1 Global ADDroximation Function Techniaues 

First, the work of Ashton and Whitney in the early 1970’s is of interest because these 

two authors both examined the analysis of anisotropic plates (in the bending sense) from 

the point of view of global approximation functions. Ashton took the classical Rayleigh- 

Ftitz approach, while Whitney worked with a modified Fourier series expansion technique. 

In both cases, the determining factor in the accuracy of the results was whether or not the 

natural boundary conditions were satisfied. 

Ashton’s work [6,7] is limited to the analysis of a few selected problems whose ge- 

ometric boundary conditions can be satisfied using simple trigonometric functions. In 

the problems where natural boundary conditions are satisfied by the chosen approxima- 

tion functions, convergence to accurate solutions is good; however, in those cases where 

natural boundary conditions are not satisfied, convergence is shown to be unsatisfactory 

even for gross response quantities such as maximum displacement and buckling load [8]. 

This limitation is severe in problems where the choice of separable functions of the form 

X ( z ) Y (  y) satisfying natural boundary conditions is precluded by coupling between bend- 

ing and twisting. If coupling between bending and extension is also present, satisfaction 

of natural boundary conditions becomes even more difficult. 

Later work by Whitney [9,10] show$ that the use of a modified double Fourier series 

analysis results in better convergence because functions can be derived which satisfy natural 

boundary conditions. For the problems studied, the technique works well; however, the 

method is still not generally applicable in an automated fashion to a wide range of problems, 
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since new functions must be derived for each set of boundary conditions. Also, if bending- 

extcnxional coupling is prcscnt, the method a s  it is presented is not, applicable. 

The use of the exterior penalty function provides an easily automated way to use global 

approximation functions for the analysis of a wide range of problems involving complex 

mechanical couplings and boundary conditions. The penalty function method allows the 

choice of any set of approximation functions, so long as they are separable and adhere to 

simple symmetry rules. Boundary conditions are satisfied automatically, freeing the analyst 

to select approximation functions which represent complicated response quantities more 

accurately than would functions limited by boundary condition requirements. This freedom 

from the limitations of boundary conditions should make possible the use of approximation 

functions chosen for accuracy, making the Rayleigh-Ritz technique a viable alternative to 

the finite element method for problems having simple shapes. 

1.2.2 Reduced Basis Work 

Considerable work has been devoted to the development of different reduced basis anal- 

ysis techniques, although this work goes by many different names. Most of the techniques 

are methods by which large, computationally expensive equation systems describing a dis- 

cretized structure are approximated by much smaller sets of equations. The techniques are 

generally based on the approximation of the problem solution by a combination (whether 

linear or nonlinear) of a set of basis vectors assumed to span the desired solution space. 

The different methods are distinguished primarily by the differences in the basis vec- 

tors themselves. The modal techniques used in the structural dynamics field are a form 

of reduced basis analysis, since the problem unknowns are being approximated by a linear 

combination of modes which are typically selected to be the eigenvectors of the problem 

at hand [ll]. Fairly recently, basis vectors have been developed for use in static nonlin- 

ear analysis; these vectors often consist of derivatives of response quantities with respect 

to some generalized path parameter [12]. More recently, Noor has analyzed anisotropic 

plates using various order derivatives of response quantities with respect to the anisotropic 
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material stiffness coefficients as basis vectors [18]. Elements of this last approach will be 

applied herein. 

Noor’s work in the area of anisotropic analysis has dealt exclusively with the finite 

element method, used in conjunction with the symmetry relations published in reference 

[13]. Taking this approach, he has simplified the process of obtaining a set of basis vectors 

for an anisotropic problem in three ways. First, the equation systems defining the basis 

vectors are shown to be approximately half the size of the full equation system; second, 

only one set of nonlinear equations must be solved to obtain the basis vectors. Finally, 

many elements of the reduced system are shown to be zero for symmetric or antisymmetric 

loading. 

However, the finite element method is a technique which is best suited to complex 

geometries not easily characterized analytically. For geometrically simpler structures, a 

classical Rayleigh-Ritz analysis can take the place of a finite element model. It is partic- 

ularly interesting to consider such an analysis in the context of the symmetry relations 

detailed in [13] since these relations can be directly applied in the choice of approximation 

functions. These simplifications find use in all stages of the analysis, from formation of the 

full and reduced equation systems, to appropriate choice of approximation functions. 

1.2.3 ExDerimental Work 

Jensen [14] studied the buckling and postbuckling behavior of fully anisotropic plates 

with bending-extensional coupling in an experimental context. Square plates of various 

laminations were tested, and the results compared with both classical Rayleigh-Ritz analy- 

sis and finite element analysis results. (Again, the Ritz functions met geometric boundary 

conditions.) The eleven layup configurations examined ranged from orthotropic to fully 

anisotropic with bending-extensional coupling. 

The work is fairly extensive, but the results do leave room for additional investigation, 

as noted by the author in his recommendations. The laminates studied in reference [14] 

were carefully chosen in order isolate several different distinguishing characteristics inherent 
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in panels with anisotropy and bending-extensional coupling. With this groundwork laid, 

it is now desirable to study laminates which might be used in the design of actual aircraft. 

It would also be desirable to test anisotropic laminates using a test setup which has been 

employed extensively by others (for example, [15]) for two reasons. First, the suitability of 

such test methods to the testing of anisotropic panels with bending-extensional coupling 

could be evaluated; second, test results could be qualitatively compared with the results 

of others. 

1.3 Objectives and Scope 

The overall objective of the present work is to study the effects of anisotropy and 

bending-extensional coupling on the buckling and postbuckling response of flat panels. 

The specific objectives of the present work are: 

1. To develop a modified Rayleigh-Ritz analysis technique and apply it to the linear 

and nonlinear analysis of anisotropic panels with bending-extensional coupling. 

Modifications include, for the linear case: 

a. Exploiting known symmetries of anisotropic panels in the selection of ap- 

proximation functions [13]. 

b. Developing and applying a reduced basis technique based on these same 

symmetries. 

c. Enforcing the geometric boundary conditions via an exterior penalty function 

approach, rather than by choosing approximation functions which satisfy the 

boundary conditions automatically. 

For the nonlinear case, only modifications (a) and (c) will be used. 

2. To gain insight into the postbuckling response and failure characteristics of pan- 

els of various aspect ratios which possess anisotropy and bending-extensional 

coupling by conducting postbuckling experiments involving such panels. Any 
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observed phenomena which are not present in the behavior of panels without 

anisotropy or bending-extensional coupling will be noted. 

The scope of the current work includes: 

1. Analysis of thin, flat laminated composite panels possessing anisotropy and bend- 

ing-extensional coupling using both the modified Rayleigh-Ftitz technique and 

readily available h i t e  element analysis tools. The effects of transverse shear de- 

formation are included in the Rayleigh-Ftitz analysis, but not in the finite element 

analysis. Failure criteria will not be considered. 

2. Uniaxial loading in all analyses and experiments, with transverse loading being 

used as a check case in the Rayleigh-Ftitz analyses. 

3. Use of simple linear and trigonometric approximation functions in the Rayleigh- 

Ritz analysis. 
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Chapter 2 

Problems Involving Bending-Extensional Coupling and Anisotropy 

2.1 Mechanical Couplings 

The concepts of anisotropy and bending-extensional coupling are most easily explained 

in terms of the constitutive relations for a laminated panel. The following constitutive 

equation relates the extensional stress resultants N1, N2, and N12, bending resultants MI, 

M2, and M12, and transverse shear stress resultants Q1 and Q2 to the corresponding strain 

quantities defined below via the material stiffness matrices A, B,  D, and C: 

b (2.1) 

I (Note that for purposes of calculating the material stiffness coefficients shown above, the 

reference surface is taken to be the rjniddle surface of the panel.) For later reference, the 

constitutive equation can be written in a more compact form: 

i, j = 1, 2, 6 

k, I = 4, 5 
(2.2) 

~ 

For convenience, the matrix C is partitioned shown. The A coefficients are known as 

the extensional or membrane stiffnesses of the panel. The D coefficients are referred to as 

the bending stiffnesses, and the B coefficients are called the bending-extensional coupling 

stiffnesses since they couple bending and extensional behavior. Finally, the C terms are 

the transverse shear stiffness coefficients. All these coefficients depend upon the layup 
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configuration and are derived from basic theory of laminated composites as may be found 

in any of the standard texts on the subject (See, for example, [8].) 

A modified von KArmAn type nonlinear plate theory is used with transverse shear 

strains and bending-extensional coupling included. The strain-displacement relations are: 
Extensional Strains Curvatures 

Transverse Shear Strains 

2 € 1 3  = $1 -k a i W  

2% = 4 2  + a 2 W  

where the symbol indicates differentiation with respect to zi.  The conventions which 

are used for the plate geometry, force and moment resultants, loads, and displacements 

are shown in Figure 2.1. 

Three simplified forms of equation 2.1 can be obtained by examining three major 

types of laminates: 

1. Midplane-symmetric orthotropic laminates 

2. Unsymmetric orthotropic laminates 

3. Anisotropic (nonorthotropic) laminates 

The first category, that of midplane-symmetric orthotropic layups, possesses a consti- 

tutive matrix of the following form: 

Nl 
N 2  

N 1 2  

Ml 
M 2  

M 1 2  

Q2 

Qi 

- 

Al l  A 1 2  

A 1 2  A 2 2  

' A 6 6  
_----  

Symmetric 

2& 23 

2& 13 
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This form occurs because a midplane-symmetric laminate, by definition, possesses mirror 

symmetry with respect to the midplane, causing the entire B matrix to vanish. The only 

remaining coupling is embodied in the A12 and 0 1 2  terms. This coupling is known as the 

familiar Poisson effect, i.e., the occurrence of lateral strain when an axial load is applied, 

and vice-versa, as well as the presence of curvature in both directions. 

When an orthotropic laminate is not midplane symmetric, the Bij terms are nonzero 

and the following relation is obtained: 

I Dll 0 1 2  - I .  
Symmetric I DI2 D22 - I . 

I ’  ’ D66 I * 

This relationship, which exhibits coupling between bending and extension, will occur when 

the layer orientations or thicknesses on one side of the laminate midplane are not identical 

to orientations or thicknesses on the other side. The presence of the Bij terms means 

that when the panel is subjected to inplane forces or displacements, curvatures are ob- 

served. Likewise, when bending-type loads or curvatures are applied, extensional strains 

are observed. 

In postbuckling analysis, the effects of bending-extensional coupling must be kept in 

mind for the following reason. Consider a geometrically symmetric panel with symmetric 

boundary conditions and bending-extensional coupling. When a symmetric axial load is 

applied, the prebuckling deformation is symmetric. However, the post buckled configu- 

ration can be such that precise satisfaction of the symmetry conditions described in the 

next section does not occur. The response is either symmetric or unsymmetric; it is never 
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antisymmetric. This fact was noted during the finite element analysis of three of the six 

panels tested and is discussed further in Chapter 5.  

Bending-extensional coupling causes one additional difficulty. It means that more in- 

formation is required in order to evaluate moment and force resultants. In problems where 

there is no bending-extensional coupling, if only extensional strains are known, then it is 

a simple matter to obtain force resultants just from the constitutive relations; however, in 

the presence of bending-extensional coupling, curvatures must also be knc Jwn to determine 

inplane force result ants. Similarly, when bending is experienced, moment resultants are 

easily found using just curvatures and the constitutive relation. When bending-extensional 

coupling is present, extensional strains are also needed. This additional information re- 

quirement can be especially troublesome from an experimental viewpoint, since totally 

different techniques are used to measure curvatures and strains. An alternative to mea- 

surement of curvatures in addition to strains is the calculation of the curvatures and middle 

surface strains using the assumption that the strain variation is linear in the thickness di- 

rection: 
9 

where z may take on any value from -h /2  to h / 2 .  

Anisotropic laminates can be distinguished from orthotropic laminates by the presence 

of any of the following four sets of coupling coefficients: 

1) Inplane shear-extensional coupling ( A 1 6 ,  A 2 6  terms) 

2) Bending-twisting coupling ( D 1 6 ,  0 2 6  terms) 

3) Extension-twisting coupling ( I l l s ,  B 2 6  terms) 

4) Transverse shear coupling (C45 term) 

Henceforth, these material stiffness coefficients will be referred to as the anisotropic stiffness 

coefficients, and axe not to be confused with the bending-extensional coupling coefficients 

for orthotropic laminates, discussed above. 
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Inplane shear-extensional coupling causes the panel to experience inplane shear defor- 

mations when it is subjected to tension or compression. A schematic is shown in Figure 

2.2 which exaggerates such deformation for the case of a panel subjected to uniform axial 

loading. The panels analyzed in the present work are subjected to uniform end shortening, 

so that the loaded edges are not allowed to shear, as shown in the figure; however, the 

effects of shear-extensional coupling are still observed. They are particularly obvious in 

the postbuckling range; the nodal lines of the buckle pattern tend to skew diagonally, as 

shown in the contour plot of Figure 2.3. 

Bending-twisting effects become obvious when the plate begins to exhibit out-of-plane 

behavior; the plate will then become twisted (nonzero ~ 1 2 ) .  During a test, this behavior is 

easily observed by placing displacement transducers at geometrically symmetric locations 

and observing the difference between the two displacements. (See Figure 2.4.) This type 

of coupling also contributes to the overall skewing behavior shown in Figure 2.2. 

Extension-twisting coupling can occur only in laminates which are not midplane 

symmetric, since it is a form of bending-extensional coupling, and, as mentioned above, 

bending-extensional coupling occurs only when the layup is not midplane symmetric. The 

result of this type of coupling is that the plate experiences out-of-plane warping or twisting 

displacements when it is subjected to an inplane load. In the lab, this behavior can be 

observed in the same way as bending-twisting coupling; however, if both types of coupling 

are present, their effects cannot be isolated from each other in this way. 

The last type of coupling exhibited by anisotropic panels is transverse shear coupling. 

This coupling, unlike all the others, does not have an obvious, physically observable ef- 

fect on the panel response. However, it has recently been demonstrated (see [IS]) that 

transverse shear can have a pronounced effect on the postbuckling response of laminated 

composite panels. Therefore, it is expected that coupling between the two transverse shear 

quantities can also be important in determining the response. 
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2.2 Symmetries Exhibited by Anisotropic Panels 

The syininctry of the response of an isotropic or orthotropic pancl is simple: if the 

1 ) i ~ d  gcoinct ry, loading and boundary conditions have mirror symmetry, then the entire 

panel response, including displacements, stresses, strains, and force resultants, will exhibit 

the same mirror symmetry. Similarly, if the loading is perfectly antisymmetric, then the 

response is also antisymmetric. However, for anisotropic panels, the situation is not so 

simple; inversion symmetry rather than mirror symmetry is exhibited. 

Inversion symmetry, according to [13] and [17], means that if geometry, loading, and 

boundary conditions are symmetric, then the displacement field will satisfy the following 

symmetry statements: 

U a ( Z 1 , 5 2 )  = -?Ja(-X1, - 5 2 )  

w ( 2 1 , 5 2 )  = W(-% - 5 2 )  

$ a ( Z 1 9 2 )  = -$a(--~1, - 5 2 )  

c y =  1,2 

Symmetry relations for the stress resultants are: 

& / 3 ( 5 1 , 5 2 )  = NaP(--Zl ,  - 2 2 )  

M Y / 3 ( 5 1 , 2 2 )  = Map(-sl, - 5 2 )  

Q a p ( ~ 1 ,  5 2 )  = -Qap( -51 ,  - 5 2 )  

This kind of symmetry is satisfied for both orthotropic and anisotropic panels. In a post- 

buckling problem where the out of plane response may be antisymmetric, the same sym- 

metry conditions are obeyed, except that 

cy, p = 1,2 

+b, 5 2 )  = -w( - 5 1 ,  - 5 2 )  

$ a ( 5 1 , 5 2 )  = $a(-Z1,  - 5 2 )  

This statement is only true for the case of no bending-extensional coupling. When bending- 

extensional coupling is present, there are no straightforward symmetry conditions unless 

the buckle pattern is symmetric (;.e., 20 is symmetric). 
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Before considering exploiting the aforementioned symmetries in the classical Fbyleigh- 

Ritz technique, one must understand the difference between symmetries exhibited by or- 

thotropic and anisotropic panels. This is most easily done by considering how the problem 

would be solved when using the Rayleigh-Ritz method. Consider how each displacement 

degree of freedom might be approximated. Notice that the symmetry conditions on u, 

and 4, are totally satisfied if these displacements are approximated by even functions in 

one of the coordinate directions and odd functions in the other. In fact, in the solution of 

orthotropic problems, these are precisely the kinds of functions which are used. The sym- 

metry of the problem requires association of function symmetry with coordinate direction; 

for symmetric loading and therefore symmetric w, the symmetry conditions are: 
, 

where the subscripts on each vector denote evaluation of the vector at the poinu shown. 

If the problem, and therefore w, is antisymmetric and there is no bending-extensional 

coupling, then 

-U1 [i} =I:} +] (2.10) 

(21 , Z Z )  - 4 2  (-21 ,zz) (I1 , -22)  

These symmetry relations are the same as the modal symmetry relations cited in [18]. 

Using these symmetry relations, convenient tables can be formed indicating how the ap- 

proximation functions should be chosen: 
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W 

211 and 41 
u 2  and 4 2  

are concerned. This fact will be used in Chapter 3 when operator splitting is introduced 

as a modification of the classical Rayleigh-Ftitz method. 

Another consequence of the more complex symmetries exhibited by anisotropic panels 

is that the finite element model must be larger. For an orthotropic panel, only one quarter 

of the panel must be analyzed, since the two panel centerlines are lines of response sym- 

metry. However, for an anisotropic panel, the panel diagonal is the only line of response 

symmetry, and so half the panel must be analyzed. Reference [17] outlines procedures 

which can be used to analyze half of an anisotropic panel. Furthermore, as noted in 

later chapters, accurate representation of the more complex response of anisotropic panels 

requires a higher degree of discretization than for an orthotropic panel. 

Symmetric w Antisymmetric ‘10 

21 x 2  X1 5 2  

even even odd odd 

odd even even odd 
even odd odd even 
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2.3 Governing Differ ntial Equ t ions n Anisotropic Plate 
And Bending-Ext ensional Coupling 

A short discussion of the governing differential equations associated with the problems 

solved herein is presented here. The methods used throughout this thesis are energy meth- 

ods, but it is also useful to look briefly at the differential equations, since it is frequently 

helpful to view most problems from different perspectives in order to better understand 

and solve them. 

The static differential equation of an orthotropic plate with no bending-extensional 

coupling subjected to transverse load is solvable for a fairly large number of cases. Only 

even-order derivatives of displacements are present in this equation; it can therefore be 

solved analytically by the method of separation of variables. To effect such a solution, 

transverse displacement w is represented by the product of two functions, F ( z ~ ) G ( z ~ ) ,  

where one of either F or G must be a trigonometric function, i.e., a function whose second 

derivative is a constant times the original function. 

However, when bending-twisting terms are included (i.e., terms involving Dl6 and 

&), the equation becomes much more complicated due to the presence of odd as well 

as even-ordered derivatives. In this case, separation of variables will only be effective 

if either of F or G is of the form keimz,  where k and m are constants and z is either 

2 1  or 52. Even so, the resulting ordinary differential equation is difficult to solve, since it 

contains imaginary terms. The only known analytical solution to a plate problem involving 

bending-twisting coupling involves a clamped, elliptical panel under uniform load, which 

is certainly a very limited case. 

For an orthotropic plate subjected to inplane loading, there are three uncoupled differ- 

ential equations. Two of these equations are simply the plane stress equilibrium equations 

and are solved first to give the inplane displacement field. The third equation involves 

only the out-of-plane response and is identically zero if there is no transverse load. How- 

ever, if there is bending-extensional coupling, then the coupled constitutive relationship 

-. 
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serves to couple all three equations, and the solution becomes commensurately more diffi- 

cult. If anisot,ropy is included, the additional difficulty of the odd-ordcr derivatives again 

presents itself. Of course, if the nonlinear terms are added to the strain-displacement re- 

lations, then the inplane and out-of-plane differential equations are coupled even without 

bending-extensional coupling, since the force resultants will then contain terms involving 

W. 

Therefore, the differential equations of an anisotropic plate with bending-extensional 

coupling are sufficiently complex to warrant numerical solution. Available techniques in- 

clude Galerkin’s method and, from an energy standpoint, either the Rayleigh-Ritz tech- 

nique or its discretized version, the finite element method. Only the two energy methods 

will be considered herein. 
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Chapter 3 

Oevelopment of the Modified Rayleigh-Rita Technique 

3.1 Review of the Rayleigh-Ritz Technique 

The Rayleigh-Ritz method is a well-known technique for approximating the behavior 

of engineering structures. It is the forerunner of the finite element method, in that it, 

treats the entire structure as one large finite element. The classical method begins with 

the potential energy description of the problem, and results in a set of equations to be 

solved for the amplitudes of chosen approximation functions. This section reviews the 

technique and introduces the notation which is used in succeeding sections. 

3.1.1 Development of the Exact Enerm Expression 

The f is t  step in the solution of the plate problem which is the topic of this thesis is to 

write an expression for the energy of the plate, where Wext is the work of external forces: 

Using the strain-displacement relations shown in equation 2.3, the plate strains ~ ; j  can be 

written as the sum of a linear and a nonlinear part as follows: 

Linear terms: 

Nonlinear terms: 

(3.3) 
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Substituting these expressions into the strain energy and integrating over 1 3  introduces 

/ \ 81 u1 
a2u2 

dlU2 + a2u1 

dl41 

a 2 4 2  

a241 + 8142 

41 +a ,w  

+ {P} = { {eL} = { 

\ 4 2 + a 2 w  8 

force and moment resultants into the strain energy expression: 

' Jd2W 2 1  ' 
W W  2 2  

&w&w 

$ (3.5) 

\ / 

a lu l  

81.2 + a2u1 

dl 41 

a142 + a241 

u='J ([Nl N2 N121 { a2u2 } 
+ [ M l  M2 M121 { a 2 4 2  } 

2 

$(&w)2 
+ [ N  N2 Nl21 $(a2w)2 { a1wa2w 1 

(3.4) 

which are: 

N1 
N2 
N12 

Ml 

M2 
M12 

Q2 

Qi 

- 

- 

A B .  

= [BT D c] = [C] { { E " }  + {e" " } }  (3.7) 

19 



1 This substitution finally leads to the following concise expression: 

+ [eNL][C]{aL} + [eNL][C]{cNL}] dA - Wext 

I The energy is now composed of four distinct parts: terms involving either {eL} or 

{aNL} only, or combinations of {e'} and {eNL}, and the work of external forces. Now 

energy can be conveniently subdivided in the following way: 

where 

U2 = 1 /[eL] [C] {eL} dA 
2 

u, = 5 /[eL] [C] {aNL} + [eNL] [C] {aL} dA 

u4 = 5 /[eNL] [C] {aNL} dA 

the 

(3.9) 

The numeric subscripts indicate the power to which the generalized displacements 

raised in each of the three terms. Notice that, due to the definitions in equation 3.5, 

strain energy is now written entirely in terms of the material stiffness coefficients and 

five displacement degrees of freedom u1, u2, 41, 42 ,  and w .  

3.1.2 Selection and Use of Approximation Functions 

are 

the 

the 

At this point, the approximation functions for each of the five displacement degrees 

of freedom are inserted into the energy expression. In the classical version of the Rayleigh- 

Ritz method, these functions must be: 

1. Capable of satisfying all geometric boundary conditions 

2. Linearly independent 

3. A subset of a complete set of functions (e.g., Fourier series) 
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4. Differentiable up to the order present in the strain energy 

The chosen set of approximation functions can be written as shown in equation 3.10 

below, where X is a vector of as yet unknown coefficients of all the approximation functions, 

and F is a vector of the functions themselves. The indices P, Q, R, S, and T range over 

the number of functions chosen to approximate each corresponding displacement; all the 

ranges may or may not be the same. (After the array multiplication, all repeated subscripts 

denote summation.) 

= [F]{X} = [ F T  F l z  F$ F i 2  F T ]  (3.10) 

Substitution of these functions into equation 3.5 yields approximate expressions for 

{eL} and {eNL}. The linear strains then become 

{ E  L } = R ~ ~ x J  = (3.11) 

where ET is the sum of all the ranges of P, Q, R, S, and T, i.e., the total number of approx- 

imation functions used, and a ranges from one to eight, the number of strain quantities 

being used herein. The nonlinear strains are slightly more complicated. Approximation 

results in the three dimensional array RyFJ, rather than a simple two-dimensional matrix. 

This array can be thought of as having eight “planes”, where each plane corresponds to 

the index a taking on a value ranging between one and eight. Therefore, each “plane” 

of this array corresponds to one element in the nonlinear strain vector shown in equation 
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3.5. There are only three nonzero planes, since there are only three nonzero nonlinear 

strain terms. Each plane is a matrix consisting of products of appropriately differentiated 

approximation functions; for example, the first plane, corresponding to the strain term 

= ij(dlw)2 is as follows: 

T 

e . . .  

. . . .  

. . . .  

. . . .  

. . . .  

. . . .  

. . . .  

. .  

where 2'1 and T2 have the same range as T, i.e., the number of functions approximating w. 

All the zero rows and columns are included to maintain compatibility with equation 3.11, 

so that the indices I and J still have the same ranges. 

At this point, it becomes more convenient to abandon the matrix notation of equations 

3.11 and 3.12 in favor of index notation, so that reference is made to the two R arrays 

mentioned above, rather than to the detailed contents of F. Using this notation, the two 

strain vectors become 

(3.13) 

The matrix of material stiffness coefficients is then denoted by C a b ,  where b, like a,  ranges 

from one to eight. (Recall that when index notation is used, repeated indices denote 

summation. In the present work, this rule applies only to subscripts.) Furthermore, the 

arrays K ,  F, and may be introduced as the results of the integration over the area of 

the panel, excluding the unknowns XI. With these modifications, equation 3.9 becomes: 

- -  
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1- 1- 
= - K I J X I X J  2 + ~ F I J K X I X J X K  + ~ E I J K L X I X J X K X L  - Wext 

where 

1- 
= - K I J X I X J  2 

1- 
= - F I J K X I X J X K  2 

U, = 1 X I  X J  Ryja C a b  RfkL X K  X L  dA 

1- 
2 = - G I J K L X I X J X K X L  

3.1.3 Generation of the Nonlinear Eauations in X r  And the Recursion 
Formulas for the Newton-Ftaphson Iterative Procedure 

The next step is to take the variation of the energy with respect to the unknown 

coefficients and require that the coefficient of the resulting variational quantity 6 x 1  vanish 

in order to satisfy the requirement for minimum potential energy. That is, 

(3.15) 

A linear set of equations K I  J X  J = PI is obtained if the higher order U3 and U, terms 

are omitted from the energy; otherwise, a nonlinear set of equations in XI is obtained. A 

typical method of solving such a system of equations is the well-known Newton-Raphson 

technique, described briefly in Section 4.5. When using the Newton-Raphson technique, 

one solves a system of linear equations in each iteration. The equations have the form 

(3.16) 

Thus, in order to solve the problem, two partial derivatives of the energy must be taken. 
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3.1.4 Symmetrization of the Nonlinear Arrays 

To generate both the linear and nonlinear Newton-Raphson equations correctly re- 

quires mmc care with the index notation. Appendix A describes briefly the correct proce- 

dure, referred to as symmetrization, using only the quadratic contribution to the energy. 

If the unbarred symbols K ,  F ,  and G are now used to indicate symmetrized arrays 

as defhed in Appendix A, the following nonlinear equations are obtained, along with the 

corresponding Newton-Raphson recursion formula in X I ,  where PI is the load vector: 

Nonlinear equations: 

1 1 
K I J X J  + Z F I J K X J X K  + Q G I J K L X J X K X L  - P I = O  (3.17) 

Newton-Raphson recursion formula for iteration r + 1: 

= { P I  - K I J X ' ,  - F I J K X I ; X ~  - G I J K L X ; X ~ X L )  
(3.18) 

3.1.5 Generation of Load Vector P 

The load vector P was generated from the variation of the work of external forces 

Wext and is therefore dependent upon the particular load system being considered. For 

the case of a uniform transverse load, the work done is particularly simple; it is simply 

the product of the load magnitude and the transverse displacement, integrated over the 

loaded surface: 

Wext - pwdA = pX,WF,WdA - /  J (3.19) 

Then, the load vector P shown in equation 3.17 is just the variation of Wext: 

6Wext = PTSXF = p FF dA 6X,W (3.20) J 
In the case of an axial load, the situation is only slightly more complex. The work of 

an axial load is the product of the load magnitude and the axial displacement, integrated 
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along the loaded edge. If it is assumed that the panel is loaded along the edges zl = *;, 
then the work is written 

Finally, taking the variation results in the load vector P :  

(3.21) 

3.2 Enforcement of Boundary Conditions Using 
A Penalty Function Approach 

In section 3.1.2, it was pointed out that in the classical version of the Rayleigh-Ritz 

technique, all the approximation functions must satisfy the geometric boundary conditions 

of the problem at hand. This requirement can be quite limiting, in that first, it is sometimes 

very difficult to devise functions which satisfy all the geometric boundary conditions, and 

second, those functions may or may not possess good convergence properties. Therefore, 

at this point the first deviation from the classical theory is made in the following two ways: 

1. Choose functions which do not necessarily satisfy any boundary conditions 

2. Enforce the boundary conditions using a penalty function 

The penalty function approach consists of adding a penalty term P to the potential 

energy expression and then working with the variation of the augmented energy in deriving 

equations in XI; that is, 
u,=u+n 

sup = 6U + 6rI = 0 ' (3.23) 

The penalty term represents the degree to which a given constraint (in this case, a boundary 

condition) is not satisfied. The constraint can be written as 

It = r h ( X I )  = 0 (3.24) 
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where r is a penalty parameter 

._ 

nd h(X1)  is a function of the actual onstraint. It is easy 

to scc' thst if the penalty function is formulated such that it is always positive, then non- 

satisfaction of the constraint will increase the value of the augmented energy. Therefore, 

since setting the first variation of Up to zero and solving for XI constitutes minimization 

of Up,  the penalty term is forced to zero and the constraint is satisfied. Note that the 

addition of the external penalty function can be viewed as the placement of a very stiff 

spring at points where constraints are to be imposed. The penalty parameter r is then 

analogous to the spring stiffness. 

Careful selection of the penalty parameter r is very important, as noted in reference 

[19] and confirmed by results presented later. Proper choice of T- strikes a balance between 

two requirements: the penalty parameter must be large enough to force satisfaction of 

the constraints, and small enough not to numerically dominate the problem and cause 

significant loss of precision. 

As an example of constraint formulation, take the case of a w = 0 boundary condition 

along an entire edge 31  = 0. An integral constraint for this boundary condition may be 

written as follows: 

(3.25) 

The integrand is raised to a power to ensure that the penalty function has a slope of zero 

when the constraint is satisfied, and so no discontinuity is introduced at the constraint 

boundary. Obviously, any power of w will satisfy this requirement; however, the use of 

an even power ensures that the constraint is positive if it is unsatisfied. Furthermore, an 

advantage of using the square of the constraint is that its variation is easily added to the 

linear stiffness matrix K ,  as will be shown subsequently. 
/ 

Noting that w is represented by a series of approximation functions as described in 

Section 3.1.2, the constraint may be rewritten as 

(3.26) 
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where 2'1 and 2'2 have the same range as T ,  i.e., the number of approximation functions 

representing w. If the penalty function is included in the derivation of the equilibrium 

equations as described above, the following term is then obtained: 

(3.27) 

This constraint can be recast in the following form so that it can be added directly to the 

linear term of the equilibrium equations: 

Sh = 

1 

(3.28) 

This integral- type constraint becomes particularly simple if the approximation functions 

are orthogonal; then, the matrix shown in equation 3.28 is diagonal, since the integral 

is zero when TI # T2. Notice that all that has been said about the edge constraint can 

be applied to constraints along a line (or even a curve) anywhere on the panel. Point 

constraints are even simpler, since they are not integrated; however, the constraint must 

still involve an even power since it must always be positive. 

3.3 Operator Splitting 

The operator splitting technique used herein allows two modifications to the classical 

Ray leigh-Fti t z technique: 

1. Partitioning of the approximation functions into strictly even and strictly odd sets of 

functions. 

2. Splitting of the constitutive matrix into orthotropic and anisotropic parts. 

The details and consequences of these modifications will be explained in the current section. 
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3.3.1 Basic Concepts 

The justification for partitioning of the approximation functions into even and odd 

sets lies in the panel symmetry conditions outlined in Section 2.2. There it was noted that 

ort hotropic panels exhibit purely symmetric or antisymmetric responses, depending on the 

symmetry of the loading and boundary conditions, while for anisotropic panels, coupling 

between the two types of responses occurs through the anisotropic (nonorthotropic) ma- 

terial stiffness coefficients. Taking these facts into account, it seems reasonable to choose 

functions for the anisotropic Rayleigh-Ftitz analysis which are either strictly even or strictly 

odd, since it is known that the response can be represented by some combination of the 

two types of functions. Therefore, a partitioned set of approximation functions is defined, 

where each partition is of the same form as equation 3.10: 

(3.29) 

The superscripts e and o refer to even or odd symmetry states, respectively. Actually, 

since indices i through I will correspond only to even functions, and indices m through 

q will refer to odd functions, the superscripts are redundant; however, they will enhance 

readability later on. The uppercase Latin indices range over both sets of functions, while 

the uppercase script letters Z and M indicate the total number of even and odd state 

functions, respectively. Recall from Chapter 2 that the term "symmetry state" refers to a 

set of approximation functions chosen according to the following table, which is repeated 

here for convenience: 
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Symmetric tu 

21 22 

W even even 

u1 and 451 odd even 

u2 and 452 even odd 

each array is to be expanded so as to be conformable for addition. For example, this 

equation could be rewritten using matrix notation as 

Antisymmetric w 

2 1  22 

odd odd 

even odd 

odd even 

Utilization of this convention will result in more concise equations, since the zero arrays 

will not be explicitly written. 

It was also stated in Section 2.2 that coupling of even and odd responses occurs 

due to the presence of nonorthotropic material stiffness terms. In order to more easily 

understand and use this coupling effect, the problem is separated into two parts: an 

orthotropic part and a nonorthotropic part. This separation is easily accomplished by 

writing the constitutive matrix as follows: 

where the superscripts 0 and A correspond to orthotropic and anisotropic (nonorthotropic) 

material stiffness coefficients, respectively. (Recall that the term anisotropic, as defined in 

Chapter 2, refers to all the constitutive terms with subscripts "16" and "26", as well as 
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the C4s term.) In this equation, X is included as a tracing parameter for the anisotropic 

terms; that is, when those terms are to be included, X is set to one. Otherwise, A is zero. 

As a result of splitting the constitutive matrix, the procedures outlined in section 3.1 will 

lead to a set of nonlinear equations of the following form: 

The combination of the special choice of approximation functions and the splitting 

of the constitutive matrix results in changes to the equilibrium equations which help to 

reveal the effects of anisotropy. To illustrate how these changes come about, the linear 

equations will be examined. Consider first how the linear stiffness array KIj  is formed. 

The orthotropic part of the array consists of the sum of the following four terms: 

(3.34) 

where the parenthetical superscripts indicate the types of functions used to form the R 

arrays. The anisotropic part of the array is similar, except that c:b is replaced by ctb. 
When the integration shown above is performed, an interesting thing happens. For 

the orthotropic array, all those terms formed from a mixture of even and odd functions 

vanish. In the anisotropic array just the opposite occurs; all terms which do not contain a 

mixture of terms drop out. Therefore, different combinations of even and odd superscripts 

also serve to identify whether the arrays are orthotropic or anisotropic. The two linear 

terms may then be written in a form analogous to equation 3.14: 

(3.35) 
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Thc: effect of the splitting process on the linear problem is more easily Seen from the 

matrix form of the full linear set of equations, with the tracing constant included: 
-e e 

K m n  
(3.36) 

(After the array multiplication is carried out, repeated indices denote summation.) Here 

it is easy to see how the even and odd parts of the equations decouple for an orthotropic 

problem (;.e., where X = 0), giving a symmetric response for a symmetric load system and 

an antisymmetric response for an antisymmetric load system. Conversely, one can also 

see how the coupling between the symmetric and antisymmetric systems is accomplished 

when the anisotropic stiffness terms are present. 

From the above discussion, it is easy to make the incorrect assumption that whenever 

a mixture of even and odd functions is used to form the K, F ,  or E arrays, the result 

will be associated with the anisotropic elements of Cab. Rather, one way to determine 

whether terms are orthotropic or anisotropic is to assign a negative one to each odd set of 

functions comprising a term and a positive one to each even set. Then, take the product 

of the resulting combination of positive and negative ones. If the result is positive, then 

the term is orthotropic; otherwise, it is anisotropic. For example, take the two F terms 

shown here: 

- -  

RL(e)  CA RNL(.oe) + RNL(eo)  CA R L ( e )  

RL(o) c0 RNL(eo) + RNL(oe)  c0 RL(o) 

(1) ~ i z ~  = J (  ra ab bmj rma ab b j  

(2) F Z , ~ ~  = J ( ma ab bin mra ab bn ) d A  

Term (1) is anisotropic, since the combination (eoe)  gives (1 - -1 - 1) = -1, and term (2) 

is orthotropic, since (oeo) gives (-1 . 1 -1) = 1. These separation properties arise from 

the form of the partial derivatives involved in the strain-displacement relations; if all the 

integrals are formed, it is easily seen that terms vanish in the various cases because the 

integrand is an odd function. This can be mathematically proven using group-theoretic 

methods; however, the proof is not presented here. Interested readers are referred to [20] 

for additional material on the subject. 
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3.3.2 Array Svmmetrization When Partitioning is Used 

As oil(: might imaginc, introduction of the partitioning scheme dot;tilcd in the previous 
I 

section complicates derivation of the equations of equilibrium and the Newton-Raphson 

equations. Some additional bookkeeping is required in forming the various mays,  since 

there are now four K arrays, eight arrays. (These numbers can be 

reduced by noting that some of the arrays are identical.) In addition, the symmetrization 

described in Appendix A becomes somewhat more complicated. To illustrate the differ- 

ences between partitioned and non-partitioned symmetrization, the linear portion of the 

problem will be re-examined in this section. The following presentation will be analogous 

to that of Appendix A, so that comparisons are easily made. 

arrays, and sixteen 

i 

i First, the energy term U2, which involves only K, is modified. This term must now 

be written to include the four partitions of K, as follows: 

1 -ee -00 -0  -oe 
U2 = - [ K i j X r X ;  + Kk,X;X;  + X(Ki,X;X; + K,,X;X;)] (3.37) 

2 

Again, in order to take the variation of U2, dummy indices must be employed, so that 

(3.38) 

The index cy has the same range as i, while ,O has the same range as m. Note that since Uz 

has been partitioned, its variation is now the sum of two separate variational quantities. 

Now, the product rule of differentiation is applied, giving: 

(3.39) 

After conversion of the partial derivatives to Kronecker deltas, this expression becomes 

32 



Elimination of the Kronecker deltas gives 

-e e -oe 

+ [ F K X ;  + ?7K",X; + X ( K i p X ;  -0 + FEX;)] 6x51 

Finally, eliminating the dummy indices gives 

(3.41) 

6U [ ((rs;; + E;;) xi" + x (E;; + 
+ ( (F:n + iTrm) x; + A (E;: + rri) x;) sx;] 

x;) sx; -5 (3.42) 

Regrouping terms and adding in the loading terms leads to the complete variational ex- 

pression of the linear problem: 

1 (3.43) 

1 -ee -ee 
6U2 =2 [ ( ICi j  + Kji)Xi" + + F E i ) X ;  - Pi" sx; 

1 -eo -oe + 5 [(zo mn +l?ym)X; + X(Kim + Kmi)Xf  - P z ]  SX; 

Finally, because coefficients of the two variational quantities must vanish, the following 

two coupled sets of equations are obtained: 

1 -ee --ee 1 -eo - (K i j  + Kji)Xj" + -A(Kim + K Z i ) X &  = Pie 
2 2 

2 2 
1 -00 -00 1 - - e o  oe 
-(ICmn + Knm)X,0 + - - A ( K i m  + iTmi)Xf = P; 

(3.44) 

With this step, symmetrization of the stiffness arrays K has been been achieved for a 

partitioned system. If the unbarred symbol K is now used to represent the symmetrized 

arrays, a set of partitioned equations identical to equation 3.36 is obtained: 

(3.45) 

Similar operations can be carried out on the and arrays in order to arrive at 

symmetrized arrays. 

(Kim = 

For the same reason that there are only three unique K arrays 

symmetrization results in only four unique F arrays and five unique G -eo 

arrays. 
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3.4 Application of Reduced Basis Techniques in Conjunction 
With Operator Splitting 

Using the information presented in previous sections, one can obtain solutions to 

many different problems using classical linear and nonlinear equation solution techniques. 

However, additional information, as well as added computational efficiency, can be obtained 

by applying reduced basis techniques in conjunction with operator splitting. 

Implicit in a reduced basis technique is the assumption that the problem unknowns 

(in this case, displacements) can be approximated by some linear combination of a set of 

independent “basis vectors”. This assumption amounts to the transformation 

where each column of the matrix [r] is a preselected basis vector or assumed mode, the 

vector { X }  contains an amplitude for each mode, X is the total number of degrees of 

freedom contained in X, and Af is the number of basis vectors to be used. A common 

choice for the basis vectors has been derivatives of a nonlinear solution with respect to a 

generalized path parameter [21]; that is, 

(3.47) 

where 7 is the path parameter and X is the nonlinear solution. These basis vectors are 

commonly referred to as path derivatives. 

The transformation shown above is used to effect a reduction in problem size; thus, a 

much smaller system of nonlinear equations is obtained. For a finite element problem of 

some size, solution of reduced equations is of course much less expensive than solution of 

the full set of equations. The reduced equations are used in place of the full system until a 

pre-defined error measure dictates that the basis vectors must be regenerated using a new 

nonlinear solution. 
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Recently, work has been done in which the basis vectors are derivatives of a finite 

elemcnt solution with respect to a tracing constant X similar to that, introduced in equation 

3.32 [MI. The same concept will be used here, so that the transformation matrix [r] is 
defined as 

Note that each vector is evaluated at X = 0. This is because approximation of the problem 

unknowns in this way amounts to forming a "generalized" Taylor series about X = 0, 

in which the normally fixed coefficients of the various series terms are replaced by free 

parameters 1211. That is, the solution to the anisotropic problem is viewed as a large 

perturbation from the orthotropic solution. 

3.4.1 Generation of Basis Vectors 

3.4.1.a Linear Problem 

A set of recursive equations which define the basis vectors is obtained by successive 

differentiation of the equilibrium equations and evaluation of the result at X = 0, regardless 

of whether a linear or nonlinear problem is being solved. The linear problem will be 

discussed in the current section in order to introduce the concepts as simply as possible. 

First, it is more convenient to deal with one indicia1 equation, and so the two equations 

3.45 are combined to give a single equilibrium equation. 

";;xi" + KgnX; + X(Kie,"Xi + K g j X ; )  = Pie + PA (3.49) 

An equation defining the first basis vector, (Xi), = (Xf + X;),, is obtained by simply 

evaluating equation 3.49 at X = 0, giving 

Kieje (xi"), + KZn ( X i ) ,  = Pi" + P o  m (3.50) 
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(The zero subscript is a reminder that all the basis vectors are evaluated at X = 0.) Notice 

I that this equation can be written as two sets of uncoupled equations in X ;  and X i .  

(3.51) 

An equation defining the second basis vector is obtained by differentiating equation 

3.49 with respect to X one time and evaluating the result at X = 0. First, the differentiation: 

axe ax; 
ax ax Ki"j" 3 + KZn - + (K;;x; + Kgjx;) + x 

Now, evaluation at X = 0 gives: 

Once again, an uncoupled set of equations is obtained: 

(3.53) 

(3.54) 

These equations can be solved for the second basis vector, which is the fist derivative of 

the problem unknowns with respect to A. Note that the right hand sides of the above 

equations contain (XP) ,  and (X;)o ,  which are known from the solution of equations 3.50. 

As many basis vectors as are needed can be obtained by continuing this process. The 

resulting equations are defined by the following recursion formulae: 

Kiei" (x;)o + KZn = P;" + P; 
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Notice that the even and odd partitions will continue to be uncoupled in every set of 

equations. A large savings is factorization time is therefore obtained, since each partition is 

generally half the size of the full system of equations, and factorization time is proportional 

to the cube of the number of equations. Total factorization time is therefore reduced by a 

factor of four. 

An important simplification to the recursive equations can be realized if both the 

loading and boundary conditions are either purely symmetric or purely antisymmetric. 

Recall from Chapter 2 that the response symmetry of an orthotropic panel is the same as 

the symmetry of the load system; that is, if the load is symmetric, then the response is also 

symmetric, and similarly for an antisymmetric load case. Since equations 3.50 are simply 

the equilibrium equations for an orthotropic panel, pure symmetry or antisymmetry of the 

load system gives: 

symmetric loading * P: = O * (X; ) ,  = 0 
antisymmetric loading + Pf = 0 * (Xi"),  = 0 

These simplifications propagate through the recursive equations so that in each set of 

equations, only one matrix, either A';; or Kgn, must be factored. For example, if the 

loading is symmetric, the recursive equations become 

pp-(xe) =pi" 
'3 3 0 

c =  1,3,5, ... 
0 

C =  2,4,6, ... 
0 

(3.56) 

The transformation matrix [I?] also takes on a simpler form when the loading is sym- 

metric or antisymmetric. In the case of load symmetry, [I?] becomes 

(3.57) 
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If the load is antisymmetric, then similarly, 

3.4.1.b Nonlinear Problem 

For the nonlinear problem, the procedure for obtaining the recursion equations defin- 

ing the basis vectors is similar to that used for the linear problem. As with the linear 

problem, these recursive equations are only half as large as the original set of equations; 

furthermore, only the first of the equations is nonlinear. As before, equations defining 

the basis vectors are obtained via successive differentiation of the nonlinear equilibrium 
I 

equations and evaluation of the result at X = 0. 

Recall first that the nonlinear equations obtained using the method outlined in Ap- 

pendix A are considerably longer than the linear equations, due to terms involving the 

three and four dimensional arrays F and G. In this section, only the terms involving A- 

and F will be included in the explanation of the development, since addition of the G terms 

results in extremely long and unwieldy equations which do not significantly add to the un- 

derstanding of the concepts involved. The reader will find that patterns uncovered in the 

shorter equations presented here are very similar to those found in the longer equations. 

The procedure begins with the following coupled equilibrium equations, which already 

include the tracing constant A: 

K;;X;+( Fi“j“k“ + F;;; + F;;f)X;X; + 2( F;li + F Z L  + F;$,)X&XS 

= PA 
(3.59) 
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An equation defining the first basis vector, (XI), = (Xf + X:),, is obtained by 

simply evaluating equations 3.59 at A = 0, giving 

K:; (Xj" ) ,  + (3'7; + Fj"l'k" + F;;:) (Xi"), (x;), 
+ 2(F:;i + FEi", + FfZn) ( X Z ) ,  (x:), = Pi" 

KZ' (X:),  + (Fg;i + F,":; + Fg& 
(3.60) 

+ F,"g + F/;' + F;;;) (XF),  (x;), = P; 

(The zero subscript is a reminder that all the basis vectors are evaluated at X = 0.) These 

two equations are slightly more difficult to uncouple than the corresponding linear equa- 

tions were, in that assumptions must first be made about the load and boundary condition 

symmetry. Take the case of perfectly symmetric loading and boundary conditions, in 

which case the vector P& is identically zero. To see the result of this, rewrite the second 

of equations 3.60 as follows: 

(3.61) 

If P& is zero, then either the term in brackets is zero or (X:),  is zero. If (X:),  is zero, then 

the first of the recursive equations is just the equilibrium equation for the corresponding 

orthotropic problem: 

This equation completely defines the first basis vector. Note that it is nonlinear; however, 

it is also half the size of the original full system of equations. 
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A set of equations defining the second basis vector is obtained by differentiating 3.59 

(3.63) 

Now, evaluation at X = 0 gives: 
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For a symmetric problem where ( X i ) ,  is zero, these equations become: 

= - [K"'. m: (xe) : 0 + 2(F;; + F;;; + F z g )  (xi")o (x,"),] 
(3.65) 

The first of these equations says that ( s)o vanishes, while the second equation defines 

the second basis vector ( %)o. Notice that both equations are linear, since both (Xi"),  

and (X; ) ,  are known quantities. Also note that the same pattern of alternation between 

derivatives of even and odd parts of XI is occurring, as was shown for the linear problem 

in equation 3.57. As before, as many basis vectors as are needed can be obtained by 

continuing this process. 

3.4.2 Generation and Solution of the Reduced Equation System 

3.4.2.a Linear Problem 

Once the desired basis vectors have been obtained, the reduction of the original system 

of equations can be done. Before beginning, it is convenient to rewrite the transformation 

matrix using the more compact index notation, as well as the superscripts e and o to 

indicate even and odd partitions as before. 

Using this notation, equation 3.46 can be written in greater detail as 

(3.66) 

x; + x: = (qC + rkC) x, (3.67) 

Application of the transformation is a fairly simple two step procedure. First, the 

displacement degrees of freedom in the original equilibrium equation 3.49 are replaced by 
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the transformation equation; then, the resulting equation is premultiplied by the transfor- 
I mation matrix so that the resulting system is symmetric. 

(3.68) 

, 
I This equation is a symmetric system of n/ equations whose solution gives the participation 

I coefficients X,, and can be rewritten as 

(3.69) 

Once the participation coefficients are obtained, the full solution XI can be recovered using 

equation 3.46, and solution of the linear problem is complete. 

3.4.2.b Nonlinear Problem 

I 

I 

The basis vectors generated by the procedure outlined in Section 3.4.1.b can be used 

to greatly reduce the computational effort involved in the static nonlinear analysis of 

an anisotropic panel. More precisely, the effort required for solution of an anisotropic 

problem can be reduced to slightly more than the effort required for the corresponding 
I 

I orthotropic problem, provided that the loading and boundary conditions are symmetric. 

The sequence of steps for the simplest possible application of the reduction technique to 

nonlinear problems is as follows: 

1. Given a load factor p ,  solve for the N nonlinear basis vectors corresponding to 

that load level. Obtaining the basis vectors involves solution of one nonlinear 

set of equations (equation 3.62) and N - 1 linear equations (similar to equation 

3.65). All these equation systems are half the size of the corresponding equations 

for the anisotropic structure. 

2. Compute the reduced nonlinear equations using these basis vectors. The resulting 

system will be much smaller than the original set of equations. Usually no more 

than fifteen basis vectors are needed. Also, since there is a definite pattern 
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dcfining the basis vectors which are zero, the computational effort required to 

g(:1l(!rih! the reduced cquation systcrn can be rct1uc.c.d I)y judicious use of this 

pattern. 

3. Solve the reduced system of nonlinear equations to get the participation coeffi- 

cients X ,  for each of the basis vectors. 

4. Recover the full anisotropic solution by taking XI = l?ICXc. 

5. Choose the next load factor and repeat the process until the maximum desired 

load factor is attained. 

The nonlinear equation solutions delineated above can of course be performed using any 

suit able nonlinear equation solution technique, of which the classical Newton-Raphson 

method is an example. 

Computationally faster techniques have been developed which can be used in place of 

the above procedure; these techniques are outlined in [18]. There are two basic methods, 

one of which uses two successive single-parameter reductions, while the other applies only 

one two-parameter reduction. In both cases, one of the parameters is the anisotropic trac- 

ing constant used herein, and the other parameter is the load factor. Both techniques offer 

advantages over the modified classical Newton-Raphson technique described above, with 

the two-parameter reduction technique being the most efficient. The procedure described 

above has the advantage of requiring only one single-parameter reduction and is therefore 

somewhat easier to develop; from a computer programming standpoint, it should be used 

as a starting point from which to implement the techniques described in the references. 
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Chapter 4 

Numerical Studies of Modified Rayleigh-Ritz Technique 

4.1 Comments on Problem Selection 

The purpose of the present chapter is to present numerical results, both linear and 

nonlinear, obtained using the modified Rayleigh-Ktz technique of the previous chapter. 

Several different physical problems have been chosen for this purpose. In those problems 

involving anisotropic panels, the laminates, loading, and boundary conditions have been 

chosen to correspond as closely as possible to the two seven inch-wide experimental pan- 

els described in Chapter 5. Further comments regarding the detailed characteristics of 

each laminate may be found in Chapter 5. The only difference between the anisotropic 

I 

1 
panels presented in the present chapter and those of Chapter 5 is that in implementing 

the Ritz technique, some compromises had to be made in modeling the boundary con- 

ditions; these are discussed in greater detail later in the current chapter. As a result, 

quantitative comparison is not made between the Rayleigh-Ritz and experimental results; 

however, qualitative discussion is presented. Problems presented in this chapter which do 

not correspond to the panels of Chapter 5 are for comparison purposes only. 

4.2 Linear Results 

In Rayleigh-Ritz analysis, quality of results depends greatly on the suitability of the 

displacement approximation functions X; to the problem at hand. The present section will 

determine the suitability of a very simple set of functions by presenting solutions to four 

problems involving various support /loading conditions and various layup configurations. 

The software written to implement the modified Rayleigh-Etz technique allows the 

use of any set of functions satisfying the following two criteria: 

1. Separability: all functions must be of the form f(x)g(y). 

2. Symmetry: functions must be such that sets of functions can be formed which 

adhere to the symmetries shown in Table 2.1. 
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The fairly simple set of functions shown in Table 4.1 satisfies these two requirements and 

is cornposi‘xl only of t,rigonometric functions such as siw and cosine, as well as siniplc 

linear polynomials. Various subsets of those functions were used to generate all the results 

presented in this section. 

To determine the suitability of these functions, two sets of symmetric support/loading 

conditions will be examined: 

1. Uniform transverse loading, with simple support boundary conditions. 

2. Uniform axial loading, with clamped/simple support boundary conditions. 

Schematics of these two problems may be found in Figure 4.1. 

Before proceeding, the term “simple support’) for the case of a panel with bending- 

extensional coupling needs clarification. The classical definition of a simply supported 

boundary is that transverse displacement (w) and normal moment (M,) must vanish along 

the boundary. However, in the presence of bending-extensional coupling, inplane behavior 

must also be considered, since it will occur even if the load is strictly transverse. According 

to [5 ] ,  four different constraint cases involving various combinations of in-plane and out-of- 

plane displacement constraints and force resultant constraints can imply a simple support 

boundary condition; the condition used for the linear test problems solved herein is as 

follows: 

w = M n  = N n  = Nn, = 0 

where n and t are used to designate directions normal and tangent to a boundary, respec- 

tively. For a formulation which excludes transverse shear deformation, the only condition 

to be imposed is the w = 0 requirement, since the constraints on moment and force resul- 

tants are considered natural boundary conditions and are therefore not enforceable in a 

Rayleigh-Ritz formulation. For a formulation which includes transverse shear deformation, 

the rotational quantity $n is also constrained for a simply supported edge; in the notation 

of the present work, for an edge where x1 = constant, ~$2  = 0, and conversely for an edge 

where x2 = constant, 41 = 0. 
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The following two layup configurations can be combined with the two support/loading 

conditions to obtain four test problems: 

1. Orthotropic (04/904]s, layer thickness = .005 in., size 20 in. by 9 in. 

2. Anisotropic with bending-extensional coupling: 

[f50/35]5, layer thickness = .00520087 in., size 19.25 in. by 6.5 in. 

For all four problems, comparisons were made with an in-house finite element code 

which included the effects of transverse shear deformation and employed mixed formulation 

finite elements [22]. For the orthotropic panels, a 12 by 8 grid of MD9-4 elements was used; 

these elements employ biquadratic shape functions in the approximation of the generalized 

displacements, and bilinear shape functions in the approximation of the stress resultants. 

For the anisotropic panels, a 12 by 6 grid of MD16-9 elements was used; these elements 

employ bicubic shape functions in the approximation of the generalized displacements, 

and biquadratic shape functions in the approximation of the stress resultants. The finite 

element model used is shown in Figure 4.2. 

To verify the correctness of the Rayleigh-Ritz solution, total strain energy and max- 

imum displacement were compared with the mixed formulation finite element solution, 

which is taken as the standard for comparison. Also, detailed examinations of the nonzero 

displacements were made by plotting each displacement at several points along the panel’s 

centerlines. 

4.2.1 Transversely Loaded OrthotroDic Panel 

The transversely loaded orthotropic panel was used because it permits several simplifi- 

cations which greatly reduce problem size and complexity. First, approximation functions 

can be chosen which satisfy the boundary conditions; therefore, no penalty function is 

needed to enforce them. Second, solution of such a problem involves the use of a set of 

even symmetry state functions only; no odd symmetry state functions are needed, since the 

load and boundary conditions are symmetric. Also, since there is no bending-extensional 
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coupling, no functions are needed to represent u1 and u2. Taking these simplifications into 

account, the functions chosen to represent each displacement are: 

Number 
Of Terms 

1 
5 
9 
16 

u 1 :  0 

u 2 :  0 

Energy 

Value % Error 

0.1751 1.16 
0.1770 0.08 
0.1771 0 
0.1771 0 

mrxl nrx2 
$1 : cos (7) sin (T) 

Value 

4 . 7 9 9 ~  
4.651 x 
4 . 6 6 2 ~  lo-' 
4 . 6 6 0 ~  lo-' 
4.661 x lo-' 
4.661 x lo-' 

m, n = 1, 3, 5... 

% Error 

2.97 
0.22 
0.03 
0.02 

0 
- 

Energy and center transverse displacement results are shown in Table 4.2. The column 

reporting number of terms refers to the number of terms representing each of the three 

displacements. Therefore, the total size of the linear system is three times the number of 

25 
FEM 

terms shown in Table 4.2. 

0.1771 0 
0.1771 - 

Table 4.2. Linear Results for [04/904]~ 

From the displacements shown in Table 4.2, the solution is essentially converged when 

five series terms are used. Examination of the plots shown in Figure 4.3 proves this 

assessment to be correct, since four of the five solutions are indistinguishable. Strain 

energy, however, reflects a slightly slower convergence, as well as a slight oscillation about 

the finite element solution as more terms are used. This behavior has proved typical of 

modified Rayleigh-Ritz technique. 
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4.2.2 Transverselv Loaded Anisotropic Panel With 
Bending- Extcmional Coupling 

The transversely loaded anisotropic panel was used because, unlike the orthotropic 

panel, it admits no simplifications, except that for a small enough load, it is a linear prob- 

lem. The presence of bending-extensional coupling means that approximation functions 

must be included for both u1 and u2. Also, for the types of functions used, boundary 

conditions must be enforced using the penalty function method. Furthermore, both even 

and odd symmetry state functions must be included, since coupling between the two states 

is present. 

The full set of functions shown in Table 4.1 is used to approximate the response 

in this problem. Each displacement is approximated by a set of functions composed of 

the same number of even and odd symmetry state terms. For example, if 102 terms are 

used to approximate ul ,  then the 51 even state functions consist of one linear term, 25 

sin( y) cos( y) terms, and 25 cos( 7) sin( y)  terms, while the 51 odd state functions 

are of similar composition. Note that, according to Table 4.l.a, the functions representing 

w are an exception. In that case, since there is no even state linear term, only a total 

of 101 functions would be used. (If the even state linear term were included, then the 

cos(0) cos(0) term would have to be omitted, since it is also linear. The presence of both 

terms would introduce redundancy into the system, and the stiffness matrix would become 

singular and therefore unfactorable.) Also, because both inplane degrees of freedom are 

completely free, the odd state linear term representing u2 is omitted. 

Energy and center transverse displacement results for the transversely loaded aniso- 

tropic panel are shown in Table 4.3. The column reporting number of terms refers to 

the number of terms representing each of the five displacements, with w and u2 being 

represented by one less function, as discussed above. Therefore, the total size of the linear 

system is five times the number of terms shown in Table 4.3, minus two. 
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Table 4.3. Linear Results for [f50/35]5, Transversely Loaded Panel 

% Error 

0.99 
0.46 
0.28 
0.19 
- 

Number 
Of Terms 

18 
38 
66 
102 

FEM 

Value 

7 . 3 2 5 ~  
7 . 4 0 7 ~  loA3 
7 . 4 0 3 ~  
7 . 4 0 5 ~  
7.411 x 

Energy I w,, in. 

Value 

2 . 0 7 2 ~  
2.083 x 
2 . 0 8 7 ~  
2 . 0 8 9 ~  
2 . 0 9 3 ~  

% Error 

1.16 
0.05 
0.01 
0.01 
- 

From Table 4.3, the energy and transverse displacement are converged to three digits 

when 66 terms are used. Examination of the plots shown in Figure 4.4 confirms that using 

66 functions per displacement does indeed provide an acceptable solution, in that the 66 

term solution is nearly indistinguishable from the 102 term solution and from the finite 

element solution for the three larger displacements. Also, notice that good agreement is also 

obtained using the 38 term representation. (The finite element solution displays erratic 

results for displacements u1 and u2 because they are much smaller than the maximum 

displacement in the panel.) 

4.2.3 Axiallv Loaded Orthotropic Panel 

The axially loaded orthotropic panel is another problem which permits several sim- 

plifications. First, since there is no out-of-plane behavior when the load is purely axial 

(and buckling has not occurred) no functions are needed to approximate w. Also, since the 

loading is symmetric, no odd state functions are needed. Therefore, the function set to be 

used consists of all the even state functions shown in Table 4.1, except that no functions 

are included to represent w or either of the two rotations 41 and $2. 

Boundary conditions for this problem are slightly more complicated than those for 

the transversely loaded panels. Because this panel, like all the rest, will exhibit coupling 

between axial and lateral behavior (i.e., Poisson effect), uniform displacement will not 

occur along the loaded edges. To prevent bowing of the loaded edges, the first derivative 
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I 
I -  

Number 
Of Terms 

9 

19 

33 

51 
FEM 

of u1 along those edges must be constrained to zero; therefore, the additional penalty term, 

consistent with the conventions of Section 3.2, is 

Energy 6, in. up,, in. 

Value % Error Value % Error Value % Error 

0.2776 0.02 6 . 1 7 0 ~  0.02 1 . 4 3 3 ~ 1 0 - ~  13.1 

0.2777 0 6 .170~  0.01 1.624 x 3.9 

0.2777 0 6.171 x 0 1.501 x 4.0 

0.2777 0 6.171 x 0 1 . 5 8 2 ~ 1 0 - ~  1.2 
- 6.171 x - 1 . 5 6 4 ~ 1 0 - ~  - 0.2777 

Table 4.4. Linear Results for [04/904]s, Axially Loaded Panel 

Values of energy, loaded edge axial displacement S, and lateral displacement up, along 

the simply supported edge are compiled in Table 4.4. The column reporting number of 

terms refers to the number of terms representing each of the two displacements; therefore, 

the total size of the linear system is twice the number of terms shown in Table 4.4. 

From Table 4.4, both the energy and loaded edge displacement are converged to three 

digits when only 9 terms are used. However, up, never really converges, even when the 

full 51 terms are used. This behavior is due to the clamped boundary conditions along 

the loaded edge. Since u1 is free on all four edges of the panel, a simple linear distribution 

is obtained, as shown in Figure 4.5.a. However, since up is constrained along the loaded 

edge, the Poisson effect which would normally cause a lateral expansion along that edge 

is inhibited. Therefore, since up is not constrained along the unloaded edges of the panel, 

a look at the short centerline of the panel reveals a slightly more complicated nonlinear 

distribution for u p ,  as shown in Figure 4.5.b. 
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4.2.4 Axially Loaded Anisotropic Panel With 
I3cndinr-Exterisiond Coiipling 

Thc fiinction set, used for this problem is idcntical to that uscd for the transversely 

loaded orthotropic panel, except that the odd state linear term is included in the repre- 

sentation of u2. The “straight edge boundary condition” introduced for the axially loaded 

orthotropic panel is also used here, and prevents not only bowing due to the Poisson effect, 

but also edge shearing due to shear-extensional coupling, as shown in Figure 2.2. 

Results for the axially loaded anisotropic panel problem are shown in Table 4.5. Since 

the full set of functions shown in Table 4.1 must be used to approximate the response, the 

number of terms reported in Table 4.5 must be multiplied by five, and then one subtracted, 

to obtain the size of the full linear system. 

Table 4.5. Linear Results for [f50/35]5, Axially Loaded Panel 

Number 
Of Terms 

18 
38 
66 
102 

FEM 

Energy 

Value 

.5474 

.5613 

.5670 

.5700 

.5787 

~~ 

% Error 

5.41 
3.01 
2.04 
1.51 
- 

6, in. 

Value 

1 . 6 8 4 ~  
1 . 7 2 7 ~ 1 0 - ~  
1.745 x 
1.754 x 

1.779 x 

% Error 

5.34 
2.92 
1.91 
1.41 
- 

From Table 4.5, it is evident that this problem is the most demanding of the four, in 

terms of the number of functions needed to obtain an accurate solution. Three-digit accu- 

racy is never obtained in any of the solutions shown. Examination of Figure 4.6 indicates 

that a 102 term approximation provides a good estimate of the finite element solution, 

while a 66 term approximation gives results very nearly as good. Note that in-plane be- 

havior is predicted well using only a few terms, while the out-of-plane quantities are more 

difficult to model. (The finite element solution displays erratic results for displacements 

qJ1 and 42 because they are much smaller than the maximum displacement in the panel.) 
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4.3 Effect of the Penalty Parameter on Accuracy of Linear Results 

For the results just presented, no mention was made of the penalty parameter; how- 

ever, choice of this parameter can have a profound effect on the accuracy of the solutions. 

Too large a penalty parameter can result in an ill-conditioned equation system, while a 

choice at the other extreme can mean that boundary conditions are not adequately satis- 

fied. In this section, results of parametric studies of the penalty parameter are presented 

to give the reader some appreciation of the effect of this parameter. In this chapter, an 

overall penalty parameter of lo8 was used, unless otherwise noted. 

First, examine Table 4.6. This table presents results from solution of the axially loaded 

anisotropic panel of Section 4.2.4 for different values of the penalty parameter r .  Several 

different parameters are presented; the following list defines each one: 

r = Penalty parameter 
U = Strain energy 
IRI = Magnitude of the residual vector R, calculated by substituting the f i tz  

coefficients back into the linear equilibrium equation A’ijXj - Pi. 
6 = End shortening at the center of the panel’s loaded edges 

6 BC = Number of digits to which the loaded edges are straight 

w, = Center transverse displacement 

w BC = Order of magnitude satisfaction of the w = 0 constraints along the 

u2 BC = Order of magnitude satisfaction of the 242 = 0 constraints along the 
panel’s four edges 

panel’s four edges 

It is evident from these results that all three of the response variables, U, 6, and 

w,, are essentially insensitive to variation of the penalty parameter when the penalty 

parameter is at least lo8,  and the residual is at an acceptable level regardless of the value 

of r .  However, boundary condition satisfaction is much more sensitive to variations in the 

penalty parameter . 

It seems that the easiest boundary condition to satisfy is the w = 0 condition; this 

condition is at an acceptable level for any value of r greater than lo7. The most difficult 

condition to satisfy appears to be the u2 = 0 condition along the loaded edge; this condition 
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Table 4.6. Penalty Results - Overall Penalty Parameter* 

6 BC 

1 
1 

3 
2 

4 

5 

6 

d 
wcx10-2 w BC 

-.1131 10-6 

-.lo59 10-8 

-.lo86 10-7 

-.lo53 10-9 
-.lo52 10-l' 

-.lo52 lo-'' 

-.lo52 

109 

.6011 

.5810 

.5707 

.5670 

.5662 

.5661 

.5661 

10-15 

10-15 

10-14 
10-13 

10 -I2 

10-l' 

6x10-2 

.1884 

.BO3 

.1758 

.1745 

.1742 

.1742 

.1742 

* See text for definitions of variables presented in this table 

~2 BC 
(Uy - 10-4) 

10-4 

10-5 

10-5 

10-7 

10-9 

does not become sufficiently small until r reaches lo1'. (Sufficiently small is defined as 

six orders of magnitude smaller than the largest displacement in the panel, which is S, at 

Furthermore, it is also difficult to obtain a constant S condition along the loaded 

edge; this is not accomplished to six digits until r reaches loll .  

More insight into these difficulties are gained by examining the contour plots shown 

in Figure 4.7. Look first at the contour of ul; from this plot, it is evident that the effect 

of an unsatisfied straight edge condition is that the edge is slightly bowed. Note that the 

skewing caused by the presence of shear-extension coupling is successfully prevented along 

the loaded edge; however, one cannot blame this coupling for the difficulty in satisfying 

the straight edge condition, since similar problems were encountered in working with the 

[f30/90]5 panel, which has no extension-shear coupling. 

Rather, as is evident from the u2 contour plot, the cause of the difficulty is the 

requirement that u2 be zero along the loaded edge. Notice that steep u2 gradients are 

present in the corners of the panel; since u1 and u2 are very strongly coupled via the 

well-known Poisson effect, there is a strong tendency for the loaded edge to bow inward, 

and for the corners to also move inward. Therefore, much higher penalty parameters are 

required in order to satisfy both the constant S and u2 = 0 conditions. 
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In order to put these difficulties in perspective, it is important to note that, even 

though the boundary conditions are not satisfied to as many digits as might be desirable, 

the desired character of the response is obtained. That is, the gradients in u2 at the 

corners are in fact present, as is evident from the contour plots, and skewing caused by 

shear-extensional coupling is totally prevented along the loaded edges. 

In addition, experience with nonlinear analysis of these problems indicates that it 

is unwise to impose overly stringent precision requirements on boundary conditions. For 

example, orthotropic problems were solved in which an overall penalty parameter of lo9 was 

used, with a penalty parameter of lo1' being used to enforce the straight edge boundary 

condition. When this problem was run on a VAX 11/785, which carries sixteen significant 

digits in all calculations (in double precision), acceptable results were obtained. However, 

the same problem with the same penalty parameter was then solved on a Cray-2, which 

carries only fourteen significant figures (in single precision); in that case, convergence was 

not obtained even on the first load step, due to the ill-conditioning cause by the large 

penalty parameters. Conversely, when the penalty parameter for the entire panel was 

decreased to lo8, converged solutions were easily obtained on both machines. Furthermore, 

note that since only half as many functions were required to solve this orthotropic problem 

than are needed for an anisotropic problem, ill-conditioning due to the size of the penalty 

parameter can only get worse for anisotropic problems. Therefore, even though Table 4.6 

indicates that acceptable linear solutions can be obtained using high penalty parameters, 

care must be exercised when choosing penalty parameters for nonlinear problems. 

4.4 Linear Results Using Reduced Basis Techniques 

From the results of the previous sections, it is evident that acceptable solutions can 

be obtained using subsets of the functions shown in Table 4.1. However, as indicated by 

results for the axially ioaded anisotropic panel, the system of linear equations required for 

I 

an accurate solution can become quite large; in that case, 509 equations were required. The 
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reduced basis technique described in Section 3.4 is one way to reduce the size of the equation 

system. Recall that this technique involves approximating the solution using a set of basis 

vectors which were essentially sensitivity derivatives of the response with respect to the 

anisotropic material coefficients, evaluated at the point where the anisotropic coefficients 

are zero. 

In this section, solutions obtained using this reduced basis technique will be examined 

for the axially loaded anisotropic panels of Section 4.2.4. In particular, two details of 

these results are of interest. First, it is of course important to determine how well the 

chosen basis vectors approximate the full system. This determination is easily made by 

examining local and global quantities for the panel being analyzed. Secondly, the basis 

vectors themselves should be examined in order to determine whether they are linearly 

independent. 

In order to measure the linear independence of a given set of vectors, the Grammian 

may be used. As explained in [23], the Grammian is the determinant of the Gram matrix, 

which is formed as follows: 

M c d  = r c l r l d  (4.3) 

That is, elements of the Gram matrix are formed by taking appropriate dot products 

involving the basis vectors. If the basis vectors are normalized beforehand so that the 

length of each vector is one, then the Grammian will range between zero and one. If the 

Grammian vanishes, then the basis vectors can be shown to be linearly dependent, while 

a Grammian of one indicates complete linear independence. Note that, as will be shown 

herein, the Grammian can be used to determine the required number of basis vectors, thus 

eliminating the need for detailed studies of response quantities. 
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4.4.1 Accuracv in Amxoximatinp the Full Svstem 

Shown in Table 4.7 are several key quantities calculated using rediiccd systems ranging 

in size from one to fifteen basis vectors. These results are for the axially loaded anisotropic 

plate, whose full model involves 329 equations. From this table, both the strain energy and 

the end shortening of the panel converge very rapidly; only four basis vectors are required 

for accurate representation of both quantities. However, in order to obtain a negligible 

residual vector, at least eight basis vectors are required. The effect of this last result is 

seen when smaller displacements, such as the maximum transverse displacement wc, are 

calculated; at least seven basis vectors are required before wc is converged to six digits. 

Therefore, accurate solution of this problem requires the use of at least eight basis vectors. 

Table 4.7. Variation of Results with Number of Basis Vectors Used 

N 

1 

2 

3 

4 

5 

6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

6 

.161227x 

.174011 x 

.174465x 

.174469x 

(converged) 

U 

0.523919 

0.565462 

0.566938 

0.566950 

(converged) 

W C  

-9.29727~ 

-1.00345~10-~ 

-1.04855 x 

-1.04893~ 

-1.05267~ 

-1.05276~10-~ 
-1.05268~ 

(converged) 

IRI 

loo 
10-1 

10-2 

10-3 
10-4 
10-5 

10-6 

10-7 

10-9 
10-8 

10-10 
10-10 

10-11 
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4.4.2 Grammian Results 

Table 4.8 lists values of the Grammian for different numbers of basis vectors. Again, 

these results are for the anisotropic axially loaded panel, and 329 functions were used in 

the full model. These results are consistent with those of the previous subsection since 

calculation of more than eight basis vectors causes the Grammian to essentially vanish. 

Furthermore, the results of Table 4.8 indicate that, for this class of problems, the Grammian 

provides a good prediction of the number of basis vectors required, and therefore alleviates 

the need to examine detailed results in order to select an appropriate reduced system size. 

4.8. Variation of the Grammian with Number of Basis Vectors Used 

a. 509 Functions b. 89 Functions 
~ 

Number Of 
Basis Vectors 

1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

15 

~ 

G r ammi an 

1. 

1. 

0.50 

0.45 

0.23 

1.1 x10-2 

6.6 x 

1 . 6 ~  

1.7 x 

1.1 x 10-9 
2 . 8 ~  

4 . 2 ~ 1 0 ~ ~ ~  

2 . 5 ~ 1 0 - l ~  

0. 

0. 

Number Of 
Basis Vectors 

1 

2 
3 

4 

5 

6 

7 
8 

9 

10 

Grammian 

1. 

1. 

0.45 

0.24 

4.7x 10-03 

1.1 x 10-03 
1.8 x 

2 . 8 ~  

9 . 6 ~  

1.2~10-14 
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Other numerical experiments have shown that, as one might expect, when fewer ap- 

proxirnittion fiinctions arc uscd and the nuniber of unknowns is thcrcfore smaller, fewcr 

basis vectors are needed to approximate the reduced number of unknowns. This is because 

the space defined by the smaller set of unknowns is of lower dimension, and so fewer basis 

vectors are needed to span it. Shown in Table 4.8.b are values of the Gramrnian calculated 

for the 89 function model; in that case, only seven basis vectors are needed. 

4.5 Nonlinear Results 

The problems for which nonlinear results are presented involve axially loaded or- 

thotropic and anisotropic panels similar to those presented in the previous sections, as 

well as a 6.5 inch wide, axially loaded [f30/90]5 panel similar to that described in Chap- 

ter 5. Note that the dimensions of the orthotropic panel are different from those of the 

anisotropic panels; this was done in order to obtain a control specimen which, like the 

two anisotropic panels, buckled into a w-symmetric configuration with respect to the short 

centerline of the panel. 

The two nonorthotropic panels are identical to the corresponding panels discussed in 

Chapter 5 in both lamination and thickness; however, their widths and lengths have been 

modified to compensate for the slight difference in the way boundary conditions must be 

modeled in the Ritz and finite element analyses. In the finite element models of Chapter 5, 

an extra ring of elements was added to simulate the finite-width supports used to impose 

boundary conditions in the experiments. However, in the Ritz analysis, the supports are 

modeled by simply shortening both the panels’ dimensions by amounts corresponding to 

the extra ring of elements added in the finite element model. All five degrees of freedom are 

constrained along the loaded edges, while only w is constrained along the other two edges. 

(In the linear problems presented earlier, both w and 41 were constrained along the long 

panel edges.) Note that there is no reason that the exterior penalty function approach 

presented earlier could not be used to enforce the more complex boundary conditions; 
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however, it was decided that for purposes of this work, the additional complexity was 

unnecessary. As a result, quantitative comparison is not made between the experimental 

results and the other results presented in this section; however, qualitative results are 

discussed. 

Also, in Chapter 5 ,  load was introduced at one end of the panel while the other end 

remained motionless; for the problems of the present section, load is introduced at both 

ends of the panel. The two loadings are functionally identical; the latter was used in 

order to obtain a symmetric loading condition, which is required by the Rayleigh-Ritz 

formulation. Schematics of the Rayleigh-Ritz analysis models are presented in Figure 4.1. 

Three other sets of results are presented for comparison with the Ritz results; these are: 

STAGS results, results from the mixed formulation finite element model used previously 

for comparison with the linear results, and the experimental results presented in Chapter 

5. The STAGS results presented in the following sections were obtained using models 

which correspond in geometry, boundary conditions, and lamination with the Ritz models, 

and so will be slightly different from the results presented in Chapter 5. Results obtained 

from the mixed formulation finite element analysis also correspond to the Ritz models 

in geometry, lamination and boundary conditions. (For all three analyses, the mixed 

formulation analyses employed the MD9-4 finite element described in Section 4.2.) Also, 

recall that both the Rayleigh-Ritz results and the mixed formulation results include the 

effects of transverse shear deformation, while the STAGS results do not. 

The solution strategy chosen for the Rayleigh-Ritz analysis of the nonlinear post- 

buckling problem is the well-known Newton-Raphson technique. This technique, although 

computationally expensive compared with most transformation-type methods, is simple 

to implement and gives accurate results. The particular solution procedure used herein 

consists of the following steps: 

1. Obtain an approximation for the buckling load of the panel being analyzed. This was 

accomplished using the finite element code STAGSC-1, since no eigenvalue capability 
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was included in the Rayleigh-Ritz code. (See Chapter 5 for further discussion of 

STAGSC-1.) 

2. Solve the linear problem at an initial load of 70% to 90% of the buckling load; this 

solution is an initial estimate for the first nonlinear load step. 

3. Form the nonlinear Newton-Raphson equations as described in Chapter 3; the solution 

from the previous iteration (or the linear problem if this is the first load step) is used 

in the formation of these equations. 

4. Solve this linear set of equations for a correction A X ,  to the previous solution Xi-1. 

5.  Form the new solution vector X i  -r Xi-1 + A X i .  

6. Calculate an error measure 
1 IAxil e =  -- 
n Xi 

where n is the total number of degrees of freedom. When this error is less than 

the solution is considered converged. If the solution is not converged, return to step 

3. 

7. When a converged solution has been obtained at the current load step, the load may 

be incremented. The size of this incrementation depends on the proximity of the 

current load to the buckling load. If the load is within five to ten percent of P,,, then 

incrementation proceeds very slowly. At other points in the solution procedure, the 

load may be incremented at larger intervals. 

Throughout this procedure, an imperfection must be imposed in order to trigger buckling; 

without it, no branching to the stable secondary path will occur. The imperfection is 

achieved by applying a sinusoidal transverse load with the same number of half-sine waves 

in both directions as the first buckling mode shape. (It happens that in all the cases 

presented, the desired response corresponds to the first buckling mode.) In the case of the 

STAGS analyses, imperfections of exactly the same shape as the buckling mode shape were 

used, just as in Chapter 5 ,  and in the case of the mixed formulation results, no imperfection 

was needed. Therefore, considerable differences between the three sets of results will be 
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seen in the immediate neighborhood of buckling; however, imperfection related differences 

will disappear as the load or displacement is increased beyond buckling. For a more general 

discussion of the use of imperfections to trigger buckling, as well as the entire nonlinear 

solution procedure, refer to Chapter 5. 

For the Rayleigh-Ritz analyses, the same sets of functions are used to solve the post- 

buckling problems as were used for the linear problems, with only one exception: all five 

degrees of freedom (UI, u2, #I, 4 2 ,  and w) must be represented for all problems, regard- 

less of the laminate, since both inplane and out-of-plane deformations occur. Results are 

presented for two problem sizes: 38 and 66 terms per displacement degree of freedom, 

resulting in full systems of 189 and 329 equations, respectively (since w is represented 

by one less function than are the other four displacements). Larger problems would have 

been desirable, but problem size was limited by the computer hardware. In the case of the 

orthotropic problem, half as many functions are used, since only the even function set is 

required, resulting in full systems of 94 and 164 equations. 

In the case of the STAGS analyses, the same 411-type elements that were used for 

the analyses of Chapter 5 were used here. In all three problems, a uniform grid was 

used, with the loading and boundary conditions applied as described in Chapter 5. For 

the orthotropic problem, a discretization resulting in 10 by 12 elements per half-wave of 

the buckling mode sbape was used, for a total of 360 elements, while for the orthotropic 

problems, the discretization gave 10 by 10 elements per half-wave, resulting in a total of 

300 elements. Studies were made to assure that these levels of discretization provided 

converged solutions. 

Data presented in the plots of the following sections has all been normalized with 

respect to the panel buckling load. In the case of the STAGS, Rayleigh-Ritz, and mixed 

formulation finite element results, this means normalization with respect to the buckling 

loads obtained via a STAGS bifurcation buckling analysis. The experimental results shown 

were normalized with respect to the buckling loads presented in Table 5.6. 
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It is important to note that all the Ritz solutions presented in the following sections 

were solvcd on il Cray-2 supercomputer. Bccause Cray-2 siriglc- I)rocisiori is slightly lcss 

accurate than than the double precision available on a VAX 11/785, careful choice of an 

appropriate penalty parameter becomes more important, as was noted earlier. In all three 

problems, the penalty parameter was set to lo8. 

4.5.1 OrthotroDic Panel 

The orthotropic panel analysis was taken to a load equal to about three times the buck- 

ling load, as determined by bifurcation buckling analyses done with STAGSC-1. Shown 

in Figure 4.8 is a plot of load versus end-shortening for this panel which includes four of 

the five sets of results described in the previous section, since no experimental results were 

available for the orthotropic panel. (For reference, the buckling load for this panel was 

1452 lb.) 

Aside from the expected differences between the results in the immediate neighborhood 

of buckling, the primary differences between the three sets of results are seen late in 

postbuckling. The STAGS results are slightly stiffer than the other three sets of results, 

which agree well during the early portion of postbuckling. Since the 33 term Ritz solution 

agrees well with results from the mixed formulation finite element analysis, that solution is 

considered converged. The 19 term solution, while not in total agreement with the mixed 

formulation finite element solution, still provides an accurate solution early in postbuckling. 

Since the only real difference between the STAGS and Ritz analysis is the presence of' 

transverse shear flexibility in the Ritz analysis, this difference in stiffness late in postbuck- 

ling could be attributed to transverse shear deformation. Since agreement is good between 

the mixed formulation results and the Ritz analysis, the claim that transverse shear defor- 

mation is the cause of the disparities in stiffness appears to be well supported. However, 

note that the degradation in stiffness, as defined in Chapter 5, is essentially identical for 

the two solutions, due to slight differences in initial postbuckling stiffness. 
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The agreement between the 33 term Ritz solution and the mixed formulation finite 

element solution is also seen on a pointwise basis, as shown in Figure 4.9, a plot of center 

transverse displacement. However, the 19 term Ritz solution is evidently not a good 

estimate of the behavior, and similarly for the STAGS solution. The extreme disagreement 

between STAGS and the other results in the immediate neighborhood of buckling is due 

to the larger imperfection imposed in the STAGS analysis, as noted earlier. 

Finally, examining the two contour plots shown in Figure 4.10 (one from the Ritz 

analysis and one from the STAGS analysis), it is also evident that overall qualitative 

agreement between the two analyses is good for this problem. 

4.5.2 lk30/901~ Panel 

The analysis of the [f30/90]5 panel was also taken to a load equal to about three 

times the buckling load. Shown in Figure 4.11 is a plot of load versus end-shortening for 

this panel which includes all five sets of results described earlier. From this plot, it is 

evident that for the Ritz analysis, 38 functions per displacement degree of freedom is an 

inadequate represent at ion of the problem; however, agreement is considerably better for 

the 66 function case. Even so, this higher level of approximation is still not sufficient, 

since agreement with the mixed formulation solution is not attained. (The fact that the 

Ritz solution agrees well with the experiment is not taken as proof of convergence, since 

boundary conditions were not modeled precisely.) 

The plot of center transverse displacement, shown in Figure 4.12, displays a very dif- 

ferent character from the end shortening results. Apparently, pointwise agreement between 

I the different solutions is not attained for this panel. The analysis which comes closest to 

the experiment is the STAGS analysis; then, being next in order of agreement, both the 

mixed formulation results and the Ritz analysis are less stiff than both the experiment and 

the STAGS results. One might suspect that the large imperfection used in the Ritz anal- 
l 

~ 

ysis is the cause of the disparity for that set of results; however, runs were made to ensure 

that the postbuckling solution did not vary significantly when the imperfection was made 
I 
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an order of magnitude larger, thus eliminating imperfection from consideration. Rat her, 

the most likely cause of the disparity between the mixed formulation results and the Ritz 

results is simply a lack of convergence on the part of the Ftitz analysis. Further discussion 

of the differences between the experimental results and the STAGS analysis may be found 

in Chapter 5. 

Finally, examining the two contour plots shown in Figure 4.13 (one from the Ritz anal- 

ysis and one from the STAGS analysis), qualitative agreement between the two analyses is 

attained for this problem in that both analyses display a three half-sine-wave postbuckled 

shape. However, the Ritz analysis, presumably due to its lack of convergence, displays 

some distortion near the center of each half wave. 

4.5.3 r f50 /35]~  Panel 

The analysis of the [&50/35]5 panel was taken to a load equal to about two and one- 

half times the buckling load. Shown in Figure 4.14 is a plot of load versus end-shortening 

for this panel which again includes all five sets of results described earlier. F'rom this plot, 

it is again evident that for the Ritz analysis, 38 functions per displacement degree of free- 

dom is an inadequate representation of the problem, while the 66 function approximation 

exhibits better agreement with the other solutions, but still is not adequate. Excluding 

the Ftitz solutions and examining the three remaining solutions late in postbuckling, the 

stiffness degradation seen in the experiment is not predicted by either the STAGS analysis 

or the mixed formulation results. Therefore, one cannot conclude that transverse shear 

deformation is responsible for postbuckling stiffness degradation in this problem. 

The plot of center transverse displacement, shown in Figure 4.15, displays a character 

much different from that seen for the [f30/90]5 panel, in that better agreement is obtained 

for all results except the 38 term Ftitz solution. Obviously, the 38 term approximation is 

totally inadequate. The disparity between the 66 term Ritz solution and the other curves 

again indicates the lack of convergence in the Ftitz solution. 
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Finally, examining contour plots for this panel, shown in Figure 4.16, qualitative 

agreement between the Ritz and STAGS analyses is attained for this problem, since both 

solutions exhibit a three half-sine-wave postbuckled shape, as well as the skewing of the 

entire pattern which is characteristic of panels with shear-extensional coupling. As with 

the [f30/90]5 panel, the Ritz solution displays some distortion near the centers of the 

three half-waves. This is particularly true for the center half-wave, where the oblong shape 

predicted by the STAGS analysis is rotated ninety degrees in the Ritz analysis. 
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Chapter 5 

Experimental and Numerical Studies Of 

Buckling and Postbuckling Behavior of Panels 

5.1 Characteristics of Test Specimens 

Two of the primary aims of the present study are: 

0 To investigate the buckling and postbuckling responses of rectangular laminated com- 

posite panels possessing anisotropy and bending-extensional coupling 

0 To use readily available finite element modeling techniques for the analysis of such 

panels 

In order to collect experimental data which quantifies the response of realistic lam- 

inates possessing both anisotropy and bending-extensional coupling, six graphite-epoxy 

panels were constructed; three of the panels were made using a [f50/35]5 layup config- 

uration, and the other three were constructed using a [f30/90]5 layup. The [f50/35I5 

laminate has been used in the design of a prototype aircraft known as the HiMAT (Highly 

Maneuverable Aircraft Technology) vehicle, while the [f30/90]5 laminate was chosen as 

a control specimen, since it has no membrane anisotropy. Note that both of these layups 

are unsymmetric and have a total of fifteen layers. The two sets of panels exhibit all the 

various couplings described in Chapter 2 to differing degrees. 

The first layup, [f50/35]5, possesses all the different couplings; its constitutive matrix, 

which corresponds exactly to the matrix C defined in Chapter 2, is shown in Table 5.2.a. 

The second layup, [f30/90]5, exhibits no extension-shear or transverse shear coupling, 

a lower degree of bending-twisting coupling, and a higher degree of bending-extensional 

coupling. The constitutive matrix for this laminate is shown in Table 5.2.b. All the panels 

were made from Hercules AS4-3502 graphite-epoxy unidirectional preimpregnated tape. 

Properties of this material system are listed in Table 5.1. (Note that the matrices shown 

in Table 5.2 were calculated using a panel thickness of 0.08 inches. The actual panels 
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Tiil)l(! 5.1. Material Propcrtics for Hercules AS4-3502 Grapliit,c/Epoxy Tape 

1 8 . 5 ~  10' 
E2C2 1 . 6 4 ~  lo6 

G12 0.832 x lo6 
1/12 0.35 

had thicknesses slightly different from this nominal value, and so the constitutive matrices 

used in the analyses were slightly different from those shown in the table; the purpose of 

presenting the nominal matrices is to show the approximate magnitude of the coupling 

involved.) 

One other parameter, the aspect ratio, was also varied. Three panels in each of the 

two layup sets were cut to widths of 4, 5.5, and 7 inches, with all lengths being a constant 

20 inches. Average thicknesses were calculated for each panel based on eight measurements 

taken over each panel's surface. These average thicknesses have been used in all analyses 

presented herein. Widths and thicknesses of each panel are summarized in Table 5.3. 

The six panels were all tested to failure, and each test was modeled using the finite 

element code STAGSC-1 (hereafter referred to as STAGS and described fully in reference 

[24]). Among other features, STAGS possesses a well-tested set of nonlinear solution 

algorithms, as well as a linear bifurcation buckling analysis capability, both of which were 

useful in the present study. The plate bending elements included in STAGS do not permit 

transverse shear deformation. Correlation between experimental and finite element results 

is examined in detail. 

5.2 Description of the Experiment 

5.2.1 Test Setup, Measurement Techniques, and Procedure 

A schematic and photograph of the overall test setup is shown in Figure 5.1; this 

setup is essentially the same for all the tests conducted in the present study. Tests were 

conducted using a 120 kip hydraulic test machine. The loading was axial compression in 
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Table 5.2.a. Constitutive Matrix for [f50/35]5 Panels, Thickness = 0.08” 

Cij i, j = 1, 2, ... 6 
.480977 x lo6 .322167 x lo6 .132166 x lo6 -.593526 x lo3 .430193 x 10’ -.219893 x lo3 

.483230 x lo6 .684693 x lo5 .430193 x lo2 .507488 x lo3 .268056 x lo3 
.342118 x lo6 -.219893 x lo3 .268056 x lo3 .430193 x 10’ 

.226447 x lo3 .150944 x lo3 .652591 x 10’ 
Sym. .225668 x lo3 .357176 x 10’ 

.160296 x lo3 

a ,  j = 7, 8 1 .536847 x lo5 
.272511 x lo4 

.272511 x lo4 

.537153 x lo5 c i j =  [ 

Table 5.2.b. Constitutive Matrix for [f30/90]s Panels, Thickness = 0.08” 

Cj, i, j = 1, 2, ... 6 
.613178 x l o6  .191093 x lo6 0. .122973 x lo4 .371607 x lo3 .676815 x lo3 

.613178 x lo6 0. .371607 x lo3 -.197295 x lo4 .247720 x lo3 
.211043 x lo6 .676815 x lo3 .247720 x lo3 .371607 x lo3 

.285378 x lo3 .889553 x 10’ .338407 x 10’ 
Sym. .290716 x lo3 .123860 x lo1 

.983070 x 10’ 

i, j = 7, 8 1 c . .  If = [ 0.5370oOp x lo5 0. 
0.537000 x lo5 

the long panel direction, and consists of an applied displacement at the bottom edge of 

the panel. 

The boundary conditions were imposed by steel supports attached to the panels along 

all edges. (See Figure 5.2.) The panels’ short edges were clamped along their entire length; 

each clamping fixture covered an area along the panels’ short edge extending from that 

edge to a line 0.375 inches into the interior of the panel, for a total clamped area of w 

by .375 inches, where w is the panel width. Rom a modeling standpoint, these clamping 
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Table 5.3. Measurements of Tested Panels 

Layup 

Average 

Width, in.t Thickness, inx lod3 

4 1 

~ 5.5 
7 

77.313 

77.150 
78.013 

~~ ~ 

t All panels are 20 inches long. 

supports imply, in the ideal case, that all displacements and rotations are constrained to 

zero in the area covered by the supports. 

The long edges of the panel were constrained using steel knife-edge supports, as shown 

in Figure 5.2. These supports extended only .25 inches into the interior of the panel. They 

constrained the out-of-plane displacement (w) to zero along their line of contact .25 inches 

inside the panel edge; however, rotations, as well as inplane displacements u1 and u2, were 

free, since these supports did not contact the clamping supports. 

Five kinds of measurements were made during the tests: load magnitude, out-of-plane 

displacement, displacement oft he loaded edge (or head), strain magnitudes, and qualitative 

characterization of the overall buckle pattern. Load was measured by the test machine 

load cell, and was displayed throughout the test on a properly calibrated voltmeter. Strain 

measurements were made using foil-resist ance strain gages placed at various locations on 

the panel. Out-of-plane displacement was measured using induction-type spring/plunger 

transducers known as direct current differential transducers, or DCDT's. Displacement of 

the loading head was also measured using a DCDT, and the overall buckle pattern was 

displayed using the moirk fringe technique. Strain gage and DCDT voltages were recorded 

on magnetic tape using an automated data acquisition system and were translated to strain 
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units and inches, respectively, by postprocessing software. Load data was also recorded in 

this way. 

The strain gage/DCDT layout was decided on the basis of a preliminary STAGSC-1 

linear bifurcation-buckling finite element analysis. This analysis provides a good estimate 

of buckling load and a reliable general indication of the buckle patterns to be expected, and 

has proven to be accurate enough for final buckling load calculations. The level of accuracy 

exemplified by these buckling load predictions indicates that the prebuckling behavior for 

the panels studied was not appreciably nonlinear. Bifurcation analyses have also been 

helpful in indicating closely spaced modes so that panels may be gaged in case either the 

first or the second mode is observed. (Closely spaced modes occurred in three of the six 

panels tested.) 

Once the buckle pattern is known from the bifurcation analysis, gages are placed to 

record the maximum expected strains and displacements in the panel (e.g., in the middle 

of a half-wave) and also at the center of the panel, as a point of reference. (On two of the 

panels, strain gages were also placed on nodal lines to investigate suspected failure mech- 

anisms.) The same strain gage pattern is used for both sides of the panel, so that there 

are pairs of gages mounted back-to-back over the surface of the plate. This arrangement is 

useful since bending behavior is easily observed by the divergence of back-to-back strains. 

Divergence occurs because when the panel bends, one of the gages undergoes compression 

while the other experiences tension. (See Figure 5.3.) In the case of a perfect panel with 

little or no bending-extensional coupling, the point of divergence is coincident with buck- 

ling, whereas a panel with a high degree of bending-extensional coupling or imperfection 

exhibits divergence at loads far below buckling. 

In order to observe the buckle pattern as the test progresses, the moirC fringe technique 

is used. This technique consists of first painting one side of the panel white so that it is 

highly reflective. A piece of transparent plastic film covered with very thin vertical lines (50 

per inch) is placed in front of the panel’s painted side. Then, a high-intensity light source 
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is (ljrc(:twl iLt,  the paricl throughout the test. The variat,iori in out,-of-planc displaccmcnt 

over tho pard surface during huckling and post,buckling inakes it, possihlc for the obstrvcr 

to see a contour plot of the panel’s out-of-plane displacement during the entire test. This 

technique is extremely helpful to the engineer both during and after the test in determining 

the overall behavior of the plate without taking reams of data. For example, the effect of 

anisotropy (in particular, extension/shear coupling) is very obvious, since one can actually 

see the buckle pattern skewing during the test. 

To study various failure characteristics of the six panels, each panel was tested twice; 

the only difference between the two separate runs was the stopping point of the test. The 

stopping point of the first test is determined by sounds the panel makes as it is loaded. 

For the material tested, impending failure is easily detected as a series of cracking or 

popping sounds; the first audible crack was then used as the stopping point for the first 

run. Although admittedly an imprecise technique, this method generally allows one to 

examine the area of failure initiation long before the panel is totally destroyed. 

The point of crack initiation is located using a nondestructive test technique known 

as the C-scan. The C-scan is an ultrasonic technique, in which the panel is submerged 

in water, sound waves are passed through the panel, and their attenuation is recorded at 

several thousand points over the panel’s surface. Maximum attenuation is seen as a white 

area on the C-scan, while minimum attenuation is indicated by black areas. At points 

where the panel has become delaminated, sound does not penetrate the panel, and so the 

initial failure is identified as a white area on the C-scan, while black areas indicate that 

the material is still structurally sound. (See Figure 5.4 for a sample C-scan; the remaining 

C-scans are collected in Appendix C.) Unfortunately, the C-scans also show the strain 

gages and their associated wiring, since the gages had to be left intact for the second test; 

however, failure initiation is still clearly visible in most of the C-scans. After C-scanning, 

the second test run was conducted, in which the panel was allowed to fail totally, so that 

the final failure location, load, and other data could be recorded. 
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5.2.2 Observations Regarding Experimental Techniaues 

During this study, important differences between the test methods for orthotropic and 

anisotropic panels were noted. In tests involving orthotropic panels, two strain symmetry 

conditions can be used to ensure that the loading head is level. The f is t  symmetry 

condition is that back-to-back gages must register equal strains at some low load prior 

to buckling (about 700 lbs. for these panels). The assumption is that if the loading 

head is level in the plane perpendicular to the plate, then the load is purely axial and 

there is no transverse component and therefore no bending. Secondly, gages in symmetric 

locations with respect to the horizontal centerline should show equal strain; this indicates 

that the loading head is level in the plane of the plate. (Refer to Figure 5.5.) For panels 

with bending-extensional coupling, the f i s t  requirement is never satisfied except at zero 

load, since bending is experienced whenever an axial load is applied. Furthermore, the 

symmetry conditions for anisotropic panels are not the same as those for isotropic panels. 

For anisotropic panels, inversion symmetry rather than mirror symmetry is observed, as 

described in Chapter 2. 

Before these differences were realized, very poor prebuckling stiffness agreement was 

obtained (30 to 40% error); however, once different methods were used to ensure a level 

loading head, error was reduced to 2% or less. To level the loading head, a very simple 

procedure is used. The loading head and platen are brought together and an extremely 

high load (50,000 - 60,000 pounds) is applied to the loading head. Then, all the leveling 

screws are tightened. After performing these simple steps, the loading head and platen are 

parallel. 
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5.3 Finite Element Model 

5.3.1 Discret iaation and Boundary Conditions 

All the experiments were modeled using the STAGSC-1 finite element code. Sample 

runstreams for both linear bifurcation buckling and nonlinear analyses are shown in Ap- 

pendix D. Figure 5.6 is a plot of the undeformed model geometry for the 5.5 inch wide 

plates, with boundary conditions as noted. In addition to the edge boundary conditions 

shown, additional constraints were placed on interior nodes to facilitate modeling of the 

supports described in Section 5.2.1. These constraints, depicted in Figure 5.6, are applied 

using STAGS load definition cards. Also, although the experiments are conducted using 

an applied displacement at one edge of the plate, the problem is modeled using an applied 

load at one point on the loaded edge, in conjunction with multi-point constraints to ensure 

that the loaded edge remains straight. This technique is easier than formally applying 

a displacement, since it makes postprocessing for equilibrium forces unnecessary. All the 

analyses were done using the STAGS 411 plate element. 

As can be seen from Figure 5.6, the grid is fairly fine and is nonuniform but mirror- 

symmetric about the panel centerlines. The nonuniformity arises from the need to compare 

STAGS displacements with experiment data at certain points on the panels. Symmetric 

grids were used because deviation from a symmetric pattern adversely affects results unless 

exceptionally fine grids are used. The grids used for final results are as shown in Table 5.4. 

Table 5.4. Finite Element Model Discretization 
~ 

Panel Width, in. 

4.0 
5.5 

7.0 

Total Number Elements per Half- Wave 

Y 

620 12 8 

Of Elements X 

528 l o p 2  8 
456 10.5 10 
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Element s/Half- Wave Element s/Half- Wave Total 
x-direction y-direction Elements 

6 192 
8 4 252 
12 372 

6 320 
8 8 420 
12 620 

6 448 
8 12 588 
12 868 

75 

el- 
4142 
4160 
4174 

4247 
4272 
4290 

4278 
4303 
4322 



5.3.2 Solution Strategv 

The details of the nonlinear analysis procedure used herein are explained in ternis of 

a typical end shortening curve for this type of problem, shown in Figure 5.7. The general 

idea is to allow STAGS to increment the load so that solutions are obtained at various 

points along the end shortening curve. The analysis is begun at a load below buckling, 

such as the point labeled one, and is continued far into postbuckling to a load several times 

the buckling load, such as point three. Since the analysis will be compared with test data, 

the final load is determined primarily by the panel’s exhibited failure load. 

The only difficulty is that, for the perfect case, the tangent stiffness matrix becomes 

singular and therefore unfactorable at buckling (point two in Figure 5.7). To overcome this 

problem, an imperfection is imposed on the panel in order to remove the singularity. The 

shape of the imperfection is obtained from a linear bifurcation buckling analysis, which 

generates the eigenvalue and mode shape and saves them on disk. Then, the user specifies 

that the nonlinear analysis will use the saved mode shape, multiplied by some constant. 

The result of this procedure is that, if the imperfection is not too large, the response 

is almost identical to that of the perfect case, except that the curve is differentiable at 

buckling, as shown by the solid line in Figure 5.7. The imperfection must not be too 

large, or the response will be grossly different from the perfect case. For the problems 

solved herein, the magnitude of the imperfection was about one percent of the total panel 

thickness, although a larger two percent imperfection was needed in the case of the seven 

inch wide, [f50/35js panel. One might think that for panels with bending-extensional 

coupling, the out-of-plane behavior would be enough to trigger buckling without use of 

an imperfection, but such was not found to be the case. Without the imperfection, the 

analysis remains on the unstable primary path instead of branching to the stable secondary 

path, because the level of bending-extensional coupling present in the panels tested does 

not cause sufficient out-of-plane displacement to trigger buckling. 
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One more constraint is needed when the buckling analysis shows that the structure 

has two nearly coincident eigenvalues. In such a case, specifying the proper imperfection 

shape is not enough to cause the analysis to choose the correct secondary path; convergence 

difficulties arise and the analysis cannot get past buckling. In order to force the analysis 

to choose one of the two possible secondary paths, a single Lagrangian constraint can be 

applied to force the buckled shape to adhere to the symmetry of the desired mode shape. 

For example, if the desired mode is symmetric (meaning an odd number of half-waves), 

then the analyst specifies that two appropriate points on either side of the shorter centerline 

must have the same out-of-plane displacement; if the desired mode is antisymmetric, then 

the displacements at the two points must be negatives of one another. Of course, points 

must be chosen which represent the larger displacements in the panel, and the different 

types of symmetry exhibited by anisotropic panels (described in Chapter 2) must be kept 

in mind. 

The user must also choose the nonlinear solution strategy to be employed. STAGS 

provides essentially three solution techniques: the classical Newton-Raphson technique, 

a computationally less expensive modified Newton-Raphson technique, and an option in 

which the step size is controlled automatically using a path-length parameter as an inde- 

pendent parameter [24]. The path-length techdque is used herein and was preferred over 

the two more classical Newton-Raphson techniques because they are not as effective in the 

neighborhood of buckling, when the tangent stiffness matrix is ill-conditioned [25]. 

5.4 Comparison of Experimental and Finite Element Results 
5.4.1 Presentation and Discussion of Buckling Load 

And End Shortening Results 

There are many aspects of the experiments which can be compared with computational 

results; perhaps the most informative of these in terms of global response is panel end 

shortening. This is because end shortening plots provide a simple measure of overall panel 

stiffness throughout the test, as well its a good estimate of the buckling load. There are 
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essentially three regions of interest in examining an end shortening curve. The first is 

tlie ~)rehiiclclirig raigc. It, is irxiportmt that a.grecxnc:iit, 1~ o b t i t i d  Iwtwccn niodol i i l l (  I 

I experinient within this range, since agreement indicates that material stiffness coefficients 

and boundary conditions used in the analysis are correct. Secondly, one would like to 

predict the buckling load accurately. Finally, if the prebuckling and buckling responses 

are accurate, then loading, boundary conditions, and material properties have probably 

been modeled correctly; therefore, any discrepancies in the postbuckling response cannot 

be due to improper modeling of these aspects of the problem unless they change as more 

load is applied. 

5.4.1.a Buckling Load Results and Discussion 

A few comments are in order concerning the definition of the term “buckling load”. 

For a perfect panel with no bending-extensional coupling, the buckling load is very easy 

to determine, since buckling can be discerned as a sharp knee in the end shortening curve 

or the precise point at which back-to-back strain gages diverge. However, in the presence 

of initial imperfections or bending-extensional coupling, buckling is not well defined; in 

fact, some say that, to be precise, one should not even use the term “buckling” in such 

cases. This is because the transition from a prebuckled to a postbuckled configuration is no 

longer sudden; the phenomenon becomes gradual, and so the previously sharp bifurcation 

point in the end shortening and back-to-back strain gage curves becomes a gradual curve. 

However, in the interests of brevity, the term will be used herein, and will indicate that 

load at which a perfect system without bending-extensional coupling would buckle. 

The method used to estimate the buckling load is very simple and is depicted in 

Figure 5.7; on the end shortening curve, one draws two straight lines, one along the linear 

prebuckling portion of the curve, and one along the initial part of the postbuckling curve. 

The intersection of the two lines is then the buckling load, since an end shortening curve 

for the corresponding perfect system has been constructed. If desired, this estimated 

load can be confirmed by examining back-to-back strain data, as was shown in Figure 
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5.3. To evaluate this data, one examines the area of divergence of the two strains; the 

latter portions of the two curves are then extrapolated backward until they cross at some 

point within the region of divergence, as shown in Figure 5.3. This point is then taken as 

buckling. 

With this item of terminology defined, results may now be discussed. First, once the 

loading head leveling procedure described in Section 5.2.2 was used, excellent agreement 

was obtained for prebuckling stiffnesses, which were taken to be the slope of the end 

shortening curve in the linear prebuckling range. In all cases, the slope was predicted to 

within two percent or less. Secondly, buckling load results are shown in Table 5.6, where 

it is seen that average agreement between experiment and analysis was 14.4%. Both the 

experimental buckling loads, Pc","P, and the STAGS buckling loads, PZ", were obtained 

from the end shortening curves shown in Figure 5.8. The most likely explanation for the 

difference in experimental and analysis buckling loads is the presence of fairly large initial 

imperfections. Measurements indicated that imperfections of the order of 1.5 times the 

panel thickness were not uncommon. It should also be noted that the panel exhibiting the 

largest difference between analysis and experiment, the [f50/35]5, 4 inch-wide panel, also 

underwent a mode change, suggesting that the two phenomena might be related. 

Table 5.6. Buckling Loads, Pounds 

1 Panel Width, Number Of 
inches Half-Waves 

Panel Layup Pce,"P, lbs. 
I 

Percent 
Difference 

Pgm, lbs. 

4300 14.7 
5300 26.2 

t Experienced mode change 
$ Required 2% imperfection 
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Linc:a.r hifiircation buckling analyses were also condiicted for all the experiments dis- 

cussed; in all these analyses, thc first two eigenvalues and mod(: shapes were calcdiited. 

In all but one case, the first mode determined by the analysis was also the mode exhib- 

ited by the panel. As shown in Table 5.7, the panel which was the exception underwent 

a mode change, with the second mode occurring first. This panel also had the smallest 

percent separation between its buckling loads, as well as the largest percent difference be- 

tween experimental and analysis buckling loads. As is obvious from the table, very close 

eigenvalues were frequent, but no trends suggest themselves regarding this phenomenon. 

It is also worth noting that all the panels exhibit the same trend that one would expect 

Mode 1 Mode 2 

Load, lbs. Half-Waves Load, lbs. Half-Waves 

4290 5 4311 6 

5248 6 5265 5 
3016 4 3028 3 
3468 4 3559 3 

2397 3 2458 2 

2678 3 2839 2 

for isotropic or orthotropic panels: a higher aspect ratio means more half-waves in the 

% Sep.1 

0.5 
0.3 

0.4 
2.6 

2.5 

5.7 

buckling mode shape. 

Table 5.7. Linear Bifurcation Buckling Results, Pounds 
I I 

Width, I inches 1 

t Experiment exhibited mode change, with second mode occurring first; next eigenvalue 

$ Indicates the percentage by which the buckling loads for the first two modes are 
is 5401 lbs. 

separated. 

It is interesting to note that for these panels, comparison of Tables 5.6 and 5.7 indi- 

cates that the buckling loads obtained from the linear bifurcation buckling analyses are 

excellent estimates for the buckling loads obtained from the nonlinear analyses. The aver- 

age percent difference is only 1.5%. This result indicates that the prebuckling behavior is 
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not significantly nonlinear, since buckling loads are not appreciably affected by the use of 

nonlinear theory. 

5.4.1.b Postbuckling Results and Discussion 

The third and final portion of the end shortening curve depicts global postbuckling 

response. The end shortening curves shown in Figure 5.8 indicate varying degrees of 

agreement between experiment and analysis at two distinguishable stages of post buckling. 

The first stage is a range of nearly linear behavior immediately after buckling. In this 

region, the slope of the end shortening curve suggests itself as a simple basis for comparison. 

Table 5.8 summarizes the slope values for the experiment and analysis curves, and indicates 

that agreement between analysis and experiment is good in this range, except in the case 

of the [f50/35I5, 4 inch-wide panel. Also, note that agreement is slightly better for the 

a 

Layup 

[f30/90] 5 

[f50/35]5 

[f30/90]5 panels, regardless of aspect ratio. 

Table 5.8. Slope of Initial Postbuckling Curve 

STAGS Slope Experiment Slope Width, in. Percent Error ex 104 E x  104 
4.0 5.89 5.48 7.5 
5.5 7.47 7.19 3.9 
7.0 9.43 9.21 2.4 
4.0 2.77 2.44 13.5 

5.5 3.69 3.51 5.1 
7.0 4.93 4.58 7.6 

The second discernible stage of postbuckling is marked by a gradual but noticeable 

degradation of the panel’s stiffness. Agreement between analysis and experiment also de- 

teriorates markedly in this range, with better correlation being obtained for the [f30/90]5 

panels. By simply examining the end shortening plots, one can obtain a subjective esti- 

mate of the stiffness degradation of each panel; however, it is possible to obtain a numerical 

estimate which more clearly delineates the observed trends. Shown in Figure 5.9 is the 
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method used to obtain this estimate. In the figure, the early portion of the postbuckling 

curve is linearly extrapolated to a point having the same end shortening value as that 

of the experiment curve at a point far into postbuckling. Then, the difference between 

the extrapolated load and the actual load is taken as the stiffness degradation. The same 

procedure can be followed for the analysis data, and results can be compared; however, 

care must be taken to account for the differences in buckling load between experiment and 

analysis. To accomplish this, points on a set of experimental and analytical curves are 

chosen to correspond to the same load, nondimensionalized by the estimated buckling load 

P,, for the particular curve being examined. 

Results of these comparisons are shown in Table 5.9. Although comparisons are easily 

made between analysis and experiment, it is important to note that panel-to-panel com- 

parisons should not be made, since calculations were done at different values of P/Pcr 

for each panel. Different values of PIP,, had to be chosen in order to obtain results 

which represented the stiffness degradation over the entire postbuckling range. Heeding 

this admonition, two trends are nevertheless apparent. First, the percent differences be- 

tween analysis and experiment are always significantly greater for the [f50/35]5 panels. 

Secondly, for both layups, percent difference is largest for the 5.5 inch-wide panel, which 

was the only panel of the three to exhibit an antisymmetric buckling mode shape. 

Table 5.9. Postbuckling Stiffness Degradation 

Layup 

[ f30/90] 5 

Width, in. 

4.0 
5.5 
7.0 

I I 7.0 

~ 

2.0 
3.0 
4.0 

1.4 
2.0 

2.5 

STAGS, 
lb/in 

~ 

333 
800 

2000 

233 
333 

767 

Experiment, 

lb/in 

Percent 

Difference 

400 
1267 
2233 

333 
867 

1533 

61.6 

50.0 
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The end shortening results presented here appear to be very similar to those presented 

in [16]. In [16], the effect of transverse shear on the various response quantities of rectangu- 

lar aluminum and If451 graphite-epoxy panels is studied. It is important to note that the 

laminates and boundary conditions used in [16] are different from those described herein; 

thus definite conclusions are difficult to draw based on comparison with the present work. 

Nonetheless, some observations can still be made. 

The end shortening curves presented in [16] show that, for the cases studied, transverse 

shear theory predicts a slightly less stiff postbuckling response than does classical theory. 

These results are similar to those shown in Figure 5.8, in that the experimental results are 

less stiff than the finite element results obtained without shear deformation. Thus, it is 

tempting to attribute the lack of test/analysis correlation during postbuckling to the lack of 

a transverse shear flexible finite element formulation. However, it is important to note that, 

in [16], the differences between the classical and transverse shear results begin immediately 

at buckling; there is no postbuckling region in which the stiffness remains nearly constant 

and the slopes of the two curves agree, as is the case with the results presented in Table 5.8. 

Furthermore, the results presented in Table 5.9 differ greatly from those observed in the 

graphs of [16]. There is no significant disparity in the stiffness degradation predicted by 

the shear deformation and classical theories in [16], while the disparity is quite large for the 

panels examined in the present work. For these two reasons, it is difficult to attribute all 

the differences between experiment and finite element analysis to a lack of transverse shear 

flexibility in the finite element model; however, the role of transverse shear in the response 

of anisotropic laminates with bending-extensional coupling should not be discounted, and 

merits further study. 

A second explanation for the degradation of postbuckling stiffness in all the experi- 

ments is that a material failure of the type described in [26] has occurred. In [26], the point 

is made that because of the formof the stress transformation relations for an all-f45 lami- 

nate, large shear stresses are encountered in the principal material directions and therefore 
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at the matrix/fiber interface of each lamina. These shear stresses tend to break the bond 

lxtwccn tho film arid nin.trix, resulting in an inplane matrix sht*ilrillg fi~ilurc. This frdurv 

mechanism swms a likely cause for the more severe postbuckling stiffness degradation ob- 

served in the [f50/35]5 laminate, as well as for the larger disparity between predicted and 

observed stiffness degradation, since this laminate is very similar to an all-f45 laminate. 

Also, some of the C-scans shown in Appendix C support the existence of matrix shearing, 

since there does appear to be some damage which runs in the fiber direction. 

5.4.2 Presentation and Discussion of Out-of-Plane Dimlacement Results 

Out-of-plane (or transverse) displacement data was collected at seven to eight differ- 

ent points on each of the panels tested. Data obtained at the point of maximum trans- 

verse displacement is of interest, since it allows determination of the relative magnitude 

of out-of-plane behavior at the different stages of the experiment. Also, as mentioned 

previously, comparison of transverse displacement at reflectionally symmetric points in- 

dicates the amount of twist occurring throughout the experiment. Lastly, satisfaction of 

the anisotropic symmetry conditions described in Chapter 2 can be checked by comparing 

results at inversionally symmetric points. 

Shown in Figure 5.10 are plots of maximum transverse displacement for all six panels. 

From these plots, three facts can be noted. First, the maximum transverse displacements 

occurring in these experiments range between one and four times the panel thickness 

of approximately 0.08 inches. Second, the transverse displacement present at buckling 

amounts to less than 40% of the panel thickness, decreases with increasing aspect ratio, 

and is generally larger for the [f30/90]5 panels, as summarized in Table 5.10. Finally, 

the STAGS curves and the experimental curves have almost exactly the same curvature in 

postbuckling, indicating that if one adjusts for the error in buckling load, the transverse 

displacements are modeled accurately. 

The plots of Figure 5.11 indicate the amount of twisting occurring in each of the panels. 

The two curves appearing in each plot are the absolute values of transverse displacements 
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Table 5.10. Transverse Displacement at Buckling 

[f30/90]5 

I 1 

4.0 0.020 
5.5 0.025 

7.0 0.029 

Width, in. Displacement, in. 

4.0 
5.5 

7.0 

0.006 
0.017 

0.016 

26 
32 

37 

8 
22 

21 

at two reflectionally symmetric points on either side of the short centerline, as shown in the 

figure legend. If the two lines are coincident, then no twisting has occurred; the distance 

between the two lines is then the amount of twist. In the case of the [f50/35]5,4 inch-wide 

panel, a mode change prevents meaningful comparison of the two displacements; therefore, 

discussion is presented here for the remaining five plots. 

Overall, there is no pattern to the presence or absence of twisting behavior. Notice 

that for the [f30/90]5 panels, little or no twist is observed when the buckling mode is 

symmetric (Le., for the 4 and 7 inch-wide panels), but a significant amount of twist occurs 

in the 5.5 inch panel, which experienced an antisymmetric buckling mode. From these 

results, one might be tempted to assert that twisting occurs only when the buckling mode 

is antisymmetric. However, for the remaining two [f50/35]5 panels, the amount of twist 

is non-negligible regardless of mode shape, thus destroying the correlation between twist 

and mode shape symmetry. Shown in Figure 5.12 are corresponding twist plots generated 

from the finite element analysis results. These plots are consistent with Figure 5.11. 

The plots shown in Figure 5.13 are similar to the twist plots, except that they are 

displacement plots at inversionally symmetric points, and so indicate the degree of symme- 

try satisfaction. As was explained in Chapter 2, no precise type of symmetry is expected 

when an antisymmetric buckling mode is exhibited, and this is confirmed in the plots for 
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both 5.5 inch-wide panels. For the [f30/90]5, 4 inch-wide panel, the symmetry violation 

is of the samc magnitude as the twist, i.e., very small, while for the 7 inch-wide panels, 

Width, Symmetry Of Twist Magnitude Symmetries Satisfied? 

inches Mode Shape Experiment STAGS Experiment STAGS 
Layup 

I 

4 Yes 

[f30/90]5 7 No 
Symmetric Negligible Zero Yes 

5.5 Antisymmetric Large Large None Expected or Observed 

- - - - - 4 

[*50/35]5 7 Symmetric Large Large No Yes 

5.5 Antisymmetric Large Large None Expected or Observed 

the symmetry conditions are fairly well satisfied early in postbuckling, but become badly 

violated as the experiment proceeds. Shown in Figure 5.14 are similar plots made from 

the STAGS results; these plots confirm all the symmetry conditions stated in Chapter two, 

including the fact that there is no symmetry when the buckling mode is antisymmetric, as 

in the case of the 5.5 inch-wide panels. 

To summarize the twist and symmetry results, the following table is presented: 

5.4.3 Presentation and Discussion of Strain Results 

Back-to-back strain gage rosettes and axial strain gages were placed at between nine 

and fifteen locations on the tested panels. Attempts were made in all cases to record 

maximum or near-maximum strains, and in two cases, strains were recorded near failure 

locations. 

Shown in Figure 5.15 are plots of strain at those points on each panel which underwent 

maximum and near maximum strains. In the case of the 5.5 inch-wide panels, the maximum 

strain, which occurred in the center of the second of four half-waves, was not recorded; 

instead, strain in the center of the first half-wave was measured. For the other four panels, 

center strains were the maximums, since an odd number of half-waves were observed in 
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those cases. Also shown in Figure 5.15 are the estimated buckling loads for each of the 

panels, which are confirmed by the plotted strains. 

The most notable characteristic of these six strain plots is the unusual shape of most of 

the curves. Look first at plot (b), the center strains for the [f50/35]5, 4 inch-wide panel. 

The discontinuities late in postbuckling are easily explained; they indicate an observed 

mode change from a five to a six half-wave buckle pattern, and so are not unexpected. 

Plots (c) and (d), the near-maximum strains for both 5.5 inch-wide panels, are very 

similar to other published back-to-back strain curves [15], in that the two strain curves 

grow smoothly apart and do not curve back toward each other at any point. Since the 

distance between the curves is essentially twice the local curvature in the axial direction, 

such behavior simply indicates that the initial buckled shape is becoming more pronounced; 

i.e., the curvature is steadily increasing. Now compare these plots to plot (f). There, some 

curvature is developed immediately after buckling, and then about one-third to one-half 

of the way through postbuckling, the curvature decreases. Such behavior is often taken to 

indicate an overall mode change; however, this seems peculiar since the plot of maximum 

transverse displacement indicates that the maximum out-of-plane deformation increases 

smoothly throughout postbuckling. Also, no mode change was observed in the moirk 

fringe photographs. At most other points of non-negligible strain on the same panel, the 

back-to-back strain curves are either very similar to those shown in Figure 5.15, or the 

two strain curves actually cross over each other, indicating that the curvature has changed 

sign. 

The most obvious explanation which accounts for both the displacement and strain 

behavior is that, in a gross sense, the initial buckled shape is retained throughout post- 

buckling, while some of the details of the deformation pattern change. Figure 5.16, a 

plot of transverse displacement down the long centerline of the [f50/35]5, 7 inch-wide 

panel, displays just such behavior. (This plot was generated using STAGS results, and the 
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shown strains are actual test data.) Initially, the deformed shape appears nearly sinusoidal. 

Howevcr, izt P = 5733 pounds, the following clianges havc takeii pla.ce: 

0 The center half-wavc: has flattened, causing a decrease in curvature as shown in plot 

(b) of the figure, while the outer two half-waves have become more pointed, explaining 

the increase in curvature displayed in plot (a). 

0 The points of zero deflection (commonly referred to as the nodal lines) have shifted 

substantially. This explains the curvature sign change seen in plot (c); this set of 

gages was placed near enough to the nodal line for the line to have shifted from a 

position above the strain gages to a point below them. No sign change occurred for 

gages placed far away from a nodal line. 

0 The inflection points, denoted by the different symbols, have shifted, indicating that 

the entire deflection pattern has shifted off the load axis. For brevity, this phenomenon 

will henceforth be referred to as pattern eccentricity. (The inflection points were 

determined using cubic spline interpolation of the STAGS displacement data.) 

Finally, when the load has increased to 8000 lb, curvature at the center of the panel has 

increased slightly, thus explaining the “hourglass” shape of plot (b). 

Similar plots made for the other two [f50/35]5 panels display all the same trends 

as Figure 5.16, except that for the 4 inch-wide panel, pattern eccentricity is negligible. 

(See Figure 5.18 for comparison.) On the other hand, plots produced from the [f30/90]5 

panel analysis data behave somewhat differently, as shown in Figure 5.17. Comparison of 

this figure and Figure 5.16 indicate that the flattening effect is much more severe in the 

[f50/35]5 panel; in the [f30/90]5 panel, only enough flattening occurs to cause a barely 

noticeable curvature change in strain plot (b). A shift in the location of the nodal lines 

is still observed for this panel, causing a curvature sign change in plot (c); also, the outer 

half-waves become progressively more pointed with load, again causing the steady increase 

in curvature depicted in plot (a). Pattern eccentricity is not seen in this figure. 
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Further examination of all the plots shown in Figure 5.18 reveals that one general- 

ization is possible: the flattening effect is consistently more exaggerated in the [f50/35I5 

panels. For the [f30/90]5 panels, curvature at points of maximum displacement either 

remains nearly constant after a certain load, or it increases. The other two characteris- 

tics, shift of nodal lines and pattern eccentricity, occur with no particular pattern; that 

is, no real generalizations regarding these phenomena can be made. Furthermore, both 

phenomena can be observed in orthotropic panels. 

It is apparent from this discussion that decreases in curvature partway through post- 

buckling do not necessarily indicate a mode change, at least not in the classical sense of a 

shift from one deformation pattern to another, dramatically different pattern because of a 

newly encountered instability. Rather, such curvature changes can point to subtle changes 

in the deformation pattern which can best be described as changes in the overall character 

of the buckled mode shape. 

It was suggested by Jensen [14] that such curvature changes represent a localized 

dimpling, indicating the onset of a classical mode change which actually did occur for his 

panels. Such a phenomenon is possible and could account for the localized presence of 

unusual strain patterns; however, the presence of such patterns at many points on the 

plate, as well as the consistent analysis and test displacement data presented here suggest 

that dimpling is not causing the decreases in curvature; rather, gradual flattening of central 

portions of the pattern is at fault. 

5.5 Failure Initiation and Development 

5.5.1 Qualit at ive Results 

From the combination of the moirk fringe photographs (shown in Appendix B), the 

C-scan results (shown in Appendix C), and the failed panels themselves, a good qualitative 

picture of the failure characteristics of each panel is obtained. Shown in Figure 5.19 are 

sketches, drawn to scale, of all six panels. Three things are indicated on each sketch: area 
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of failure initiation as detected by C-scans, area of final failure, and final position of the 

nodal lines as indicated by the moir6 fringe photographs. No measurements are shown, 

since the photographs do not allow precise measurement. Determining the locations of the 

nodal lines is particularly difficult, since it is hard to ascertain the exact locations of lines 

of zero displacement by measuring the photographs. 

In any case, a few observations are possible. First, note that failure always initiates 

either on or very close to a nodal line. This fact is consistent with [15]. There, the ex- 

planation is advanced that “the higher strains near the specimen edges couple with the 

out-of-plane deflection gradients at the nodal line to induce sufficient transverse shearing 

loads to fail the specimen in shear before the large bending strains at the points of max- 

imum displacement become critical”. The facts embodied in this statement can for the 

most part be confirmed by information presented in various parts of this chapter, as will 

be explained in the following paragraph. 

First, it is easy to confirm that strains near the edges of the panel are higher than 

those along the centerline. Shown in Figure 5.20 are plots of strain data collected at five 

closely spaced points near the short edges of both 5.5 inch-wide panels. This data allows 

comparison of strains over the width of both panels. The magnitudes of the middle surface 

strains, indicated by open circles, are always higher near the edges of the panels. (Note, 

however, that this is not always true of the surface strains; near the bottom of the [f30/90]5 

panel, one of the center surface strains is actually slightly larger than the two edge strains.) 

Secondly, strain data collected near the nodal lines of the 7 inch-wide panels confirms that 

the strains are much higher along the specimen nodal lines, as shown in Figures 5.16 and 

5.17. (Whether strain is higher at the edge of the nodal line than at its center cannot be 

determined here, since no data was taken at the center of a nodal line.) Third, it is obvious 

from these same two figures that the gradient of transverse displacement is also high at the 

nodal line. Finally, that the panels fail in shear is suggested by the photograph shown in 

Figure 5.21. To obtain this photograph, the [f50/35]5, 7 inch-wide panel was sectioned so 
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that the area where the C-scan indicated failure initiation could be examined. A diagonal 

crack through the thickness is evident, with delaminations propagating in both directions 

away from the crack. 

A second observation involves the relationship between initial and final failure loca- 

tions. In four of the six panels, the initial delamination and the final failure were nowhere 

near each other. This is especially true for the 7 inch-wide panels, where the C-scans 

indicated failure initiation at the top nodal line, while the final failure occurred at the 

bottom nodal line. Evidently, some redistribution of load occurs after the initial damage is 

sustained, causing the final failure to frequently occur in a totally different location from 

the initial damage. 

5.5.2 Quantitative Results 

Table 5.12 presents a summary of pertinent quantitative data collected at the failure 

load of each panel. From this data, the following facts are apparent: 

0 Normalized loads increase steadily with decreasing aspect ratio, as expected. However, 

absolute failure loads are nearly the same for the 4 and 5.5 inch-wide panels of each 

layup, while the load withstood by the 7 inch-wide panels is somewhat higher for both 

layups. 

0 Loads carried by the [f30/90]5 panels are much higher, both in absolute and relative 

terms, than those carried by the [f50/35]5 panels. 

0 Normalized end shortening increases with decreasing aspect ratio, while absolute end 

shortening does just the opposite. 

5.6 Summary of Observations 

The following is a short summary of observations made in this chapter. Refer to 

Chapter 6 for discussion of conclusions, as well as for suggestions for future research. For 

the reader’s convenience, notation is made below of the sections, tables, and figures which 

best support each item. 
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Tilhle 5.12. Load and End Shortening at Failure 

Lityup 

[*30/90]5 

I------ I I 1 1 I 

Width, in. P,, lbs. Pf/PcT.  b,,  in. 6f/6,, 

4.0 8500 2.27 .129 3.9 
5.5 8570 3.12 .119 6.6 
7.0 9480 4.31 .112 9.7 

[f50/35]5 

1 I I .  I I I 

4.0 6790 1.62 .225 2.7 
5.5 6740 2.17 .199 4.7 
7.0 7220 2.93 .195 7.4 

Observations based on experiment behavior: 

0 The experimental setup is critical for laminates possessing anisotropy and/or bending- 

extensional coupling, in that mirror symmetry conditions cannot be used to ensure 

that a uniform axial load is applied. (Section 5.2.1.) 

0 Buckling loads tend to be slightly higher for the [f50/35]5 panels, with the differences 

between results for the two layups being larger for the higher aspect ratio panels. 

(Table 5.6.) 

0 Transverse displacements and bending strains at buckling are not appreciable, in- 

dicating that the effect of bending-extensional coupling on prebuckling behavior is 

negligible for the laminates studied. (Figure 5.15, Table 5.10, Tables 5.6 and 5.7, 

Section 5.4.1.) 

e According to end shortening results, there are two discernible regions in postbuckling. 

During the initial portion of postbuckling, the initial postbuckling stiffness of the panel 

is maintained. Then, about halfway through the postbuckling range, the stiffness of 

the panel begins to drop substantially. (Figure 5.8) 

Strain results indicate subtle changes in the buckle mode shape throughout postbuck- 

ling. The most noticeable changes are dramatic decreases in curvature in the central 
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portions of the [&50/35]5 buckle patterns, as well as pronounced shifting of nodal lines 

for some panels. (Section 5.4.3.) 

0 Initiation of failure always occurs at or very close to a nodal line of the buckled shape. 

This lends credence to the observations advanced in [15]. (Figure 5.19.) 

0 Locations of failure initiation and final failure are not necessarily the same, probably 

due to redistribution of load after the initial damage. (Figure 5.19.) 

0 Postbuckling load carrying capability is much greater for the [f30/90]5 panels than 

for the [f50/35]5 panels. (Table 5.12.) 

0 Maximum observed transverse displacement ranges between one and four times the 

panel thickness and is inversely proportional to panel aspect ratio. (Figure 5.10.) 

0 Satisfaction of displacement symmetry conditions described in Chapter 2 is not con- 

sistent; the conditions are violated in both of the 7 inch-wide panels. (Section 5.4.2.) 

0 Twisting behavior is observed for both layups, but does not appear in all six panels. No 

pattern of absence or presence of twisting is discernible, since no twisting is observed, 

either analytically or experimentally, in the two higher aspect ratio, [f30/90]5 panels. 

(Section 5.4.2.) 

0 bservat ions based on finite element modeling efforts: 

0 Modeling of global response in the prebuckling range presents no problem, since the 

test and analysis end shortening results differed less than two percent within the 

prebuckling range. (Section 5.4.1.) 

0 Buckling loads estimated from a nonlinear finite element analysis are an average of 

14.4% different from buckling loads estimated from test results. Predictions are better 

for lower aspect ratio panels, and are slightly better for [f30/90]5 panels (13.1% 
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average difference) than for [f50/35]5 panels (15.7% average difference). The most 

likcly citiise of the overall disparity is the presence of imperfections of the order of 1.5 

times the panel thickness. (Table 5.6.) 

For the panels examined herein, linear bifurcation buckling analysis is as accurate as 

a nonlinear analysis in the prediction of buckling loads. This result again emphasizes 

that the prebuckling behavior of the panels studied was not appreciably nonlinear. 

Bifurcation analyses were also very helpful in determining expected mode shapes, as 

well as in pointing out the likelihood of a mode change during postbuckling. (Tables 

5.6 and 5.7.) 

I Linear bifurcation buckling analysis predicts nearly coincident eigenvalues, i.e. , eigen- 

values separated by less than .5%, for three of the six panels. Only in the case where 

separation of the eigenvalues was the smallest (.3%) was an obvious mode change 

observed. (Table 5.7.) 

e In the initial portion of postbuckling, agreement between test and analysis end short- 

ening results is good (2% to 8% difference in slope) except in the case of the [f50/35]5, 

4 inch-wide panel, where the slopes differ by 13.5%. In all cases, slightly better agree- 

ment is obtained for the three [f30/90]5 panels. (Table 5.8.) 

In the later portion of postbuckling, the stiffness degradation is always larger than that 

predicted by finite element analysis. Predictions of the drop in stiffness (as measured 

by percent difference between analysis and test) are much better for the [f30/90]5 

panels by factors of two to five, and are significantly worse for the 5.5 inch-wide panels 

of both layups. Possible causes for this disparity between analysis and test include the 

lack of transverse shear flexibility in STAGS and the possibility that matrix shearing 

occurs long before final failure. (Table 5.9, Section 5.4.1.) 
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0 Finite element results indicate subtle changes in the buckling mode shape occurring 

throughout postbuckling. In all the [f50/35]5 panels, the mode shape tends to flat- 

ten, causing decreases in curvature at points of maximum transverse displacement. 

This observation is confirmed by strain results, as described above. In some panels, 

pronounced shifting of nodal lines and inflection points also occurs, but no pattern is 

evident in this behavior, and such phenomena can be observed in orthotropic panels. 

(Section 5.4.3.) 

0 In all three cases, the [f50/35]5 panels have proven more difficult to model in post- 

buckling than the [f30/90]5 panels. In reviewing the results for the two sets of panels, 

the fact stands out that the largest differences between analysis and experimental re- 

sults were usually seen for the [f50/35]5 panels. In particular, difficulties arose in 

predicting the slope of the initial part of the postbuckling end shortening curve, and 

the stiffness degradation during the latter part of postbuckling. The only substantial 

difference between the two panels is that the [f30/90]5 panel does not possess any 

extension-shear coupling; however, the evidence is not sufficient at this time to at- 

tribute the modeling difficulties to this distinguishing feature. (Throughout chapter.) 

0 The one panel which exhibited an observable mode change ([f50/35]5, 4 inch-wide) 

has proven very difficult to model. Apart from the current lack of a simple way to 

model the actual mode change, other seemingly unrelated aspects of the behavior were 

more difficult to model. For example, the percent difference in buckling load between 

analysis and experiment was 12.5% greater for this panel than for any of the others. 

Similarly, initial slope of the postbuckling curve was predicted 5.9% worse for this 

panel than for any other. (Throughout chapter.) 

0 Transverse displacements are well-predicted if adjustments are made to account for 

the error in predicting the buckling load. (Figure 5.10.) 
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0 Although symmetry satisfaction is inconsistent in the experimental results, STAGS 

results bchave precisely as predicted by the symmetry conditions of Chapter 2. (Table 

5.11.) 
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Chapter 6 

Observations and Recommendations 

6.1 Observations 

Following is a summary of the observations derived from the present work. For the 

reader’s convenience, notation is made of the section, tables, and figures which best support 

each statement. Also, each point is preceded by a short statement which categorizes it 

within the subsection. 

6.1.1 Observations Related to the Modified Ravleigh-Ritz Technique 

6.1.1.a Observations related to linear results 

0 Effect of boundarv conditions on results: Accurate solution of problems involving 

the two axially loaded panels required the use of more functions per displacement 

degree of freedom than did similar problems involving transverse loading. This was 

due to the more complex boundary conditions used in the axial loading problems; in 

those problems, the in-plane displacement u g  was constrained along the loaded edges, 

causing a complicated stress state to be present in the corners of the panels. (Sections 

4.2.3 and 4.2.4) 

0 Effect of anisotropy and bending-extensional coupling on results: Accurate solution 

of problems involving the anisotropic panel with bending-extensional coupling required 

the use of many more functions per displacement degree of freedom than did identical 

problems involving an orthotropic panel. (Section 4.2) 

0 Effectiveness of exterior penaltv approach for enforcinv - boundarv conditions: 

The external penalty function approach was effective in assuring satisfaction of bound- 

ary conditions for all problems, although in the case of the axially loaded panels, 

satisfaction of the constraint u2 = 0 constraint along the loaded edge was somewhat 

sensitive to variations in the penalty parameter. Overall, a broad range of four orders 
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of magnitude in the penalty parameter gives acceptable results for a linear problem; 

however, a narrower range of two orders of magnitude is recommended for nonlin- 

ear analysis due to observed convergence problems attributable to too high a penalty 

parameter. (Section 4.3) 

0 Performance of basis vectors: 

o For the problems involving axial loading of anisotropic panels, the chosen basis vectors 

performed well. (Section 4.4.1) 

o For the problems solved herein, the Grammian provides a good estimate of the number 

of basis vectors required to solve a given problem, thus alleviating the need to examine 

detailed results in order to select an appropriate reduced system size. (Section 4.4.2) 

6.1.1.b Observations related to nonlinear results 
I 

0 Effect of anisotrom and bending-extensional couding on results: Using the modi- 

I fied Rayleigh-Ftitz technique, postbuckling response of the orthotropic panels studied 

can be accurately predicted; however, about twice as many functions are required in 

order to predict the postbuckling response of the nonorthotropic panels studied. A 

reasonable estimate of the postbuckling behavior of the nonorthotropic panels was 

obtained using the largest possible number of approximation functions (as defined by 

computer hardware limitations.) (Section 4.5) 

0 Effect of first order transverse shear deformation effects: Slight differences in over- 

all postbuckling stiffness were seen which could definitely be attributed to transverse 

shear deformation, as in the case of the [04/90& panel; however, the addition of trans- 

verse shear deformation did not result in better prediction of postbuckling stiffness 

degradation in either of the other two cases studied. (Section 4.5) 
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6.1.2 Ohservations Based on ExDeriments 

0 Exi~critri~mtttl sctiii): Tlic experinic*iital setup is critical for litminates possessing 

anisotro1)y and/or bcnding-extensional coupling, in that mirror symmetry conclitioris 

cannot be used to ensure that a uniform axial load is applied. (Section 5.2.1.) 

0 Prebuckling range: Transverse displacements and bending strains at buckling are not 

appreciable, indicating that the effect of bending-extensional coupling on prebuckling 

behavior is negligible for the laminates studied. (Figure 5.15, Table 5.10, Tables 5.6 

and 5.7, Section 5.4.1.) 

0 Postbuckline: 

o According to end shortening results, there are two discernible regions in postbuckling. 

During the initial portion of postbuckling, the initial postbuckling stiffness of the panel 

is maintained. Then, about halfway through the postbuckling range, the stiffness of 

the panel gradually begins to drop. (Figure 5.8) 

o Strain results indicate subtle changes in the buckle mode shape throughout postbuck- 

ling. The most noticeable changes are dramatic decreases in curvature in the central 

portions of the [f50/35]5 buckle patterns, as well as pronounced shifting of nodal lines 

for some panels. (Section 5.4.3.) 

o Experimental satisfaction of displacement symmetry conditions described in Chapter 

2 is not consistent. (Section 5.4.2.) 

o Twisting behavior is observed for both layups, but does not appear in all six panels. 

No pattern of absence or presence of twisting is discernible. (Section 5.4.2.) 

0 Failure: 

o Initiation of failure always occurs at or very close to a nodal line of the buckled shape. 

This lends credence to the observations advanced in [15]. (Figure 5.19.) 

o Locations of failure initiation and final failure are not necessarily the same, probably 

due to redistribution of load after the initial damage. (Figure 5.19.) 
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6.1.3 Observations Based on Finite Element Modeling Efforts 

0 General observations: 

o In all three cases, the experimental postbuckling behavior of the [f50/35I5 panels was 

more difficult to predict analytically than that of the [f30/90]s panels. In reviewing 

the results for the two sets of panels, the fact stands out that the largest differences 

between analysis and experimental results were usually seen for the [f50/35]5 panels. 

In particular, difficulties arose in predicting the slope of the initial part of the post- 

buckling end shortening curve, and the stiffness degradation during the latter part 

of postbuckling. The only substantial difference between the two panels is that the 

[f30/90] 5 panel does not possess any extension-shear coupling; however, the evidence 

is not sufficient at this time to attribute the difficulties to this distinguishing feature. 

(Throughout chapter 5.)  

o The experimental behavior of the one panel which exhibited an observable mode 

change ([f50/35]5, 4 inch-wide panel) has proven very difficult to predict analytically. 

Apart from the current lack of a simple way to model the actual mode change, other 

seemingly unrelated aspects of the behavior were more difficult to model. For example, 

the percent difference in buckling load between analysis and experiment was 12.5% 

greater for this panel than for any of the others. Similarly, prediction of initial slope of 

the postbuckling curve was 5.9% worse for this panel than for any other. (Throughout 

Chapter 5.) 

0 Prebuckling range: - Modeling of global response in the prebuckling range presents 

no problem, since the test and analysis end shortening results differed less than two 

percent within the prebuckling range for all panels. (Section 5.4.1.) 

0 Buckling: 

o Buckling loads estimated from a nonlinear finite element analysis are an average of 

14.4% different from buckling loads estimated from test results. A likely cause of the 
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overall disparity is the presence of imperfections of the order of 1.5 times the panel 

thickness. (Table 5.G.) 

o For the panels examined herein, linear bifurcation buckling analysis as obtained from 

STAGSC-1 is as accurate as a nonlinear analysis in the prediction of buckling loads. 

Bifurcation analyses were also very helpful in determining expected mode shapes, as 

well as in pointing out the likelihood of a mode change during postbuckling. (Tables 

5.6 and 5.7.) 

0 Postbuckling: 

o In the initial portion of postbuckling, agreement between test and analysis end short- 

ening results is good for five of the six panels. (Table 5.8.) 

o In the later portion of postbuckling, the stiffness degradation is always larger than that 

predicted by finite element analysis. Predictions of the drop in stiffness (as measured 

by percent difference between analysis and test) are much better for the [f30/90I5 

panels by factors of two to five, and are significantly worse for the 5.5 inch-wide panels 

of both layups. Possible causes for this disparity between analysis and test include the 

lack of transverse shear flexibility in STAGS and the possibility that matrix shearing 

occurs long before final failure. (Table 5.9, Section 5.4.1.) 

o Finite element resdts indicate subtle changes in the buckling mode shape occurring 

throughout postbuckling. In all the [f50/35]5 panels, the mode shape tends to flatten, 

causing decreases in curvature at points of maximum transverse displacement. This 

observation is confirmed by strain results, as described in the previous section. In 

some panels, pronounced shifting of nodal lines and mode shape inflection points 

also occurs, but no pattern is evident in this behavior, and such phenomena can be 

observed in orthotropic panels. (Section 5.4.3.) 
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o Satisfaction of displacement symmetry conditions described in Chapter 2 is consistent 

for the finite element results; the conditions are violated only for the two panels which 

exhibited antisymmetric buckle mode shapes. (Section 5.4.2.) 

6.2 Recommendations 

6.2.1 Recommendations Related to the Modified Ravleivh-Ritz Technique 

0 Work should be done to obtain a more suitable set of approximation functions for 

analysis of anisotropic panels, continuing to bear in mind the symmetry relations 

for such panels which could be utilized to simplify the selection process. Using the 

existing Rayleigh-Ritz code, new sets of functions can be easily investigated. 

0 A more efficient nonlinear solution technique such as an arc-length projection tech- 

nique which would work in conjunction with the existing Newton-Raphson technique 

should be implemented in order to minimize program execution times. 

0 The reduced basis techniques discussed in Section 3.4.1.b should be implemented using 

the existing code. The code was written with an eye toward doing this, including 

organized generation of all the necessary partitioned arrays utilized in Section 3.4.1.b. 

6.2.2 Recommendations Related to ExDerimental Work 

0 Additional studies should be conducted to determine the cause of the gradual degra- 

dation of stiffness late in the postbuckling range. Panels with mechanical couplings 

similar to those used by Jensen in [14] should be tested in the same way as those exam- 

ined herein in order to isolate the cause of the phenomenon. In particular, laminates 

which are likely to display matrix shearing failures (e.g., f45-dominated laminates) 

should be carefully isolated, since matrix shearing is one possible cause of the observed 

stiffness degradation. 

0 Along a similar vein, additional attention should be focused on determining precisely 

why the [f50/35]5 panels were generally more difficult to model than the [f30/90]5 
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panels. Again, laminates which are likely to exhibit matrix shearing should be treated 

with caro. 

0 More tests involving panels which exhibit mode changes should be performed, sincc 

this behavior appears to introduce seemingly unrelated modeling difficulties into the 

problem. Such tests should rely on the panel geometry to induce mode changes, rather 

than bringing in the unnecessary complications of anisotropy and bending-extensional 

coupling. Apparently, simple bifurcation buckling analyses using STAGS can provide 

some idea of which panels are likely to exhibit mode changes, since the panel which 

displayed a mode change also had eigenvalues spaced only 0.3% apart, the smallest 

spacing of any of the six panels. 

0 Additional tests involving anisotropic panels should be performed in which several 

DCDT’s (perhaps 10) are placed down the centerline of the panels in order to further 

study the gradual flattening of the postbuckled shape with increases in load. Or- 

thotropic panels should also be tested in this way as control specimens, to confirm 

that the phenomenon is due to anisotropy. 
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Appendix A 

Array Symmetrization Using Only Quadratic Energy Terms 

This appendix will outline briefly the steps which must be taken in order to “sym- 

metrize” the stiffness array Xij arising from the quadratic strain energy term 

( A 4  
1- 
2 

U2 = - I C I J X I X J  

Note that ??ij is already symmetric; nevertheless, symmetrization can still be used, if only 

for illustration purposes. 

In order to take the variation of U2, differentiation must be carried out with respect, 

to X,, where a is a dummy index having the same range as I and J. Therefore, 

The product rule of differentiation is then applied, as follows: 

Since a X l / a X ,  can be written as 61,, and similarly, ax j / a X ,  = S J, ,  where 

1 i = j  
0 i # j  6i j  = 

the variation of U2 may be rewritten as 

Notice that the last equation involves the sum of a matrix and its transpos-, divided 

by two, which is the definition of the symmetric part of the matrix X I J  and will be 

denoted by the unbarred symbol K I  J .  This same kind of “symmetrization” also occurs as 
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a natural consequence of the variational procedure for both of the nonlinear arrays FIJI(  
nnd G / , J ~ ~ L .  For F / . J ~ { ,  thc: symmetrixcd array FIJK consists of a factor of and thc: siirri 

of six permut;ttions O f  FI  J K ,  while for G I  J K L ,  a factor of and twenty-four permutations 

of GI J K L  are required. Note that in the case of the three- and four-dimensional arrays 

F I J K  and G I  J K L ,  symmetry of these arrays means that interchanging any two indices does 

not change the array. 

Finally, the incorporation of the symmetrized array K into the expression for 6Uz 

gives 

6U2 = K I  J X  J 6x1 P . 6 )  

The above result, without 6x1, can be thought of as contributing to the right hand side of 

the Newton-Raphson equations. Obtaining the contribution to the left hand side is trivial; 

it is simply I<. 

Again note that this symmetrization procedure is not particularly important for the 

quadratic energy term since the matrix K I J  was symmetric to begin with; however, for the 

cubic and quartic energy terms which give the F I J K  and CIJKL arrays, symmetrization 

is of paramount importance, since those two arrays are not symmetric before the variation 

is taken. In implementing a computerized nonlinear solution technique involving these 

arrays, a significant storage savings can be realized if the symmetry of the arrays is noted, 

since all three can become quite large. 
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Appendix B 

Experimental MoirQ F’ringe Photographs 

This appendix contains representative Moiri: fringe photographs for each of the six 

tests discussed in Chapter 5. Each photograph includes the load meter, which displays the 

applied load in thousands of pounds. 

For each panel, four photographs are presented and are labeled as follows: 

1. Before Test: photograph of the test setup prior to introduction of load. This 

photograph gives a qualitative indication of the initial imperfection present in 

the panel. 

2. Buckling: photograph taken at a load as close as possible to the experimental 

buckling load as presented in Chapter 5. 

3. Late Postbuckling: photograph taken at a load far into the postbuckling range. 

4. Failure: photograph taken after the panel has failed. The load shown in this 

photograph will not correspond to the failure load reported in Chapter 5, since it 

was impossible to capture the panel at the precise moment of failure, before the 

panel’s load carrying capability dropped dramatically. 

One additional set of two photographs is included for the [f50/35]5, 4 inch-wide panel to 

illustrate the mode change which occurred for that panel. 

Recall that each panel was tested two times. The first test was only conducted up to 

the point of failure initiation, so that the location of failure initiation could be determined 

from C-scans, while during the second test, the panels were allowed to fail totally. The 

first three photographs shown for each panel were taken during the first t a t ,  while the 

photograph labeled “failure” was taken during the second test and will therefore appear 

slightly different from the other three photographs. 
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B e f o r e  Test  Buck1 i ng 

L a t e  Postbuckling Failure 

Figure B . l .  Moire' Fringe Photographs f o r  [+30/9015 4 Inch-Wide Panel 



Before  Test  Buck1 i ng 

F a i l u r e  L a t e  Pos tbuck l i ng  

F i g u r e  8.2. M o i r e '  F r i n g e  Photographs for [+30;/901 5.5 Inch-Wide Panel 5 
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I n i t i a l  Test  Photo 

U n a v a i l a b l e  

Buck1 i n g  

L a t e  P o s t b u c k l i n g  F a i l u r e  

F i g u r e  8.3. M o i r e '  F r i n g e  Photographs f o r  [ ? 3 0 / 9 0 ]  7 Inch-Wide Panel 5 

1 1 1  



Before T e s t  

L a t e  Postbuckl ing 

L PAGE IS 
QUALIW 

Buck1 ing 

F a i l u r e  

! 
Figure  8 . 4 .  M o i r e '  F r inge  Photographs f o r  [k50/35] 5 4 Inch-Wide Panel 
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F i v e  Half-Wave Mode Shape Observed S h o r t l y  After  Buckl ing 

S i x  Half-Wave Mode Shape Observed 960 l b  L a t e r  

F igure  8 . 5 .  

M o i r e '  F r i n g e  Photographs I l l u s t r a t i n g  

Mode Change E x h i b i t e d  by [*50/351 4 Inch-Wide Panel 5 



Before Test Buck1 i n g  

L a t e  Pos tbuck l i ng  F a i l u r e  

F i g u r e  8.6. M o i r e '  F r i n g e  Photographs f o r  [*50/3515 5.5 Inch-Wide Panel j 
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Before  Test  Buck1 ing 

L a t e  Postbuckl ing F a i l u r e  

F i g u r e  8 . 7 .  M o i r e '  F r inge  Photographs for  [*50/3515 7 Inch-Wide Panel 
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Appendix C 

C-Scans of Experimental Panels 

This appendix contains C-scans for each of the six tests discussed in Chapter 5.  Each 

C-scan is labeled with the location of failure initiation as reported in Figure 5.19, and some 

C-scans which included foreign objects easily confused with damage areas are labeled as 

such. Unfortunately, strain gages and associated wiring are visible on all C-scans, but 

these objects are easily identifiable. Recall that the white areas indicate damaged areas. 
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*Initiation 
O f  Failure 

Foreign Object 

Figure C.2. C-Scan o f  [+30/90] 5.5 inch-Wide Panel 5 
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Initiation 

O f  Failure 

Initiation 

O f  Fa i 1 ure 

Figure C.3. C-Scan o f  [+30/9015 7 Inch-Wide Panel 
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Figure C . 4 .  C-Scan of  [*50/3515 4 Inch-Wide Panel 
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. 

Foreign Object 

- 1  n i ti at ion 
O f  Failure 

Figure C.5. C-Scan of [*50/35] 5.5 Inch-Wide Panel 5 
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t- . I n i t i a t i o n  

O f  Fa i 1 ure 

Figure  C . 6 .  C-Scan of  [250/35] 5 7 Inch-Wide Panel 
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Appendix D 

STAGSC-1 Runstreams 

This appendix contains the input data corresponding to the STAGSC-1 results pre- 

sented in Chapter 5. The six runstreams differ primarily in the presence or absence of 

constraints (G cards) which force a certain symmetry to occur. Such constraints were 

necessary in order to obtain the postbuckled shape corresponding to the experimentally 

observed shape in cases where the first two eigenvalues were very closely spaced. 
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I NONLIMEAR RUI.. . [+30/-30/90]6 FLAT PLATE. . .4 in 
2 3 1 1 0 0 0 1  $ B1:NONLINEAR RUN 
3 I 0 0 0 I -1 I $ B2:i DISPL PARTIAL COMPATIBILITY CARD 
4 1 0 1 0  $ B3:i HATERIAL TABLE; I SHELL WALL TYPE 
6 -0.0008 $ B6:FACTOR MULTIPLYING HODE SHAPE USED AS IHPERF. 
fi 2000. 600. 8000. 4 C1:LOAD FACTOR 
7 0 26000 7 -1 -1 $ D1:USE ARC LENGTH HETHOD 
a 63 I1 $ F1:LEVEL OF DISCRETIZATIOI 
9 1 1 3 1 1 1 0 1  
10 2 $ G3: SET UP COPSTRAIIT TO 
11 1 31 6 3 1.E7 $ G4: FORCE SYMMETRIC BUCKLE 
12 I 33 7 3 -1.E7 $ G4: PATTERN 
13 I 0 $ 1l:HATERIAL TABLE NUMBER 
14 18.SE6 0.03027 0.83236 I. 1. 1.6E6 0 $ 12:MATERIAL PROPERTIES 
15 1 1  1 6 0 0  $ K1:16 LAYERED PLATE 
16 1 6.11917e-3 -30.0 0 $ K2:LAYER I 
17 1 5.119178-3 30.0 0 $ K2:LAYER 2 
ia I 6.11917e-3 -90.0 0 $ K2:LAYER 3 
19 1 6.11917e-3 -30.0 0 $ K2:LAYER 4 
20 I 5.11917e-3 30.0 0 $ K2:LAYER 6 
21 1 5.11917e-3 -90.0 0 $ K2:LAYER 6 
22 I 6.11917e-3 -30.0 0 $ K2:LAYER 7 
23 I 6.11917e-3 30.0 0 $ K2:LAYER 8 
24 1 5.11917e-3 -90.0 0 $ K2:LAYER 9 
25 I 6.119178-3 -30.0 0 $ K2:LAYER 10 
26 1 5.119178-3 30.0 0 $ K2:LAYER 11 
27 1 6.11917e-3 -90.0 0 $ K2:LAYER 12 
28 I 6.119178-3 -30.0 0 $ K2:LAYER 13 
29 1 6.11917e-3 30.0 0 $ K2:LAYER 14 
30 I 6.119178-3 -90.0 0 $ K2:LAYER IS 
31 2 0 $ M1:SELECT RECTANGULAR GEOMETRY 
32 0 .  20. 0 .  4. $ H2A:COMER COORDINATES 
3 3 1 0 0 . 0 . 0 0  $ M6:SHELL WALL RECORD 
34 411 8 6 0 0 
35 .375 1.626 6.39 1.61 1.61 6.39 1.625 .376 $ I2:SEGMEITS IM X DIRECTION 
36 1 6 1 8 6  6 18 6 1 $ 13:ELEMEITS PER SEGMENT 
37 .25 .626 2.26 .626 .26 $ I6:3 SEGMENTS IN Y DIRECTIOP 
313 1 2 4 2 I $ IS:# ELEMEITS PER SEGMENT 
39 0 3 2 3 0 
40 100 000 $ P2:U FREE 01 TOP OF PLATE 
4 1 1 0 0  f Q1:l LOAD SYSTEM 
4 2 1 6 0  $ Q2:l LOAD SYSTEM. 6 LOAD CARDS 
43 I. 1 1 I 3 0 $ Q3:APPLIED LOAD ON TOP OF PLATE 
44 0. -1 3 2 0 $ Q3:W=O OH BOTTOH EDGE OF TOP CLAMPED SUPPORT 
45 0. -1 3 0 10 $ Q3:U=O ON INSIDE EDGE OF RIGHT SIWPLE SUPPORT 
46 0 .  -1 3 62 0 $ Q3:W=O OB TOP EDGE OF BOTTOH CLAMPED SUPPORT 
47 0. -1 3 0 2 $ Q3:W=O ON INSIDE I3DGE OF LEFT SIMPLE SUPPORT 
4 8 1 0 0  $ R1:PRIIJT DISPLACEMEITS 

$ G2:PARTIAL COMPATIBILITY 11 U AMIG TOP EDGE 

$ H1:4-IODED QUAD ELEMEITS 

$ P1:DEFBD BELOU/UICOISTR/CLAHPED/~COISTR 

Figure D . l .  STAGS Input Data for [f30/90]5 4 Inch-Wide Panel 
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1 NOWLIBEAR RUN. . . [+30/-30/90] 5 FLAT PLATE. . .5.6 in 
2 3 1 1 0 0 0 1  $ B1:BOILINEAR RUN 
3 1 0 0 0  1 - 1  1 $ B2:l DISPL PARTIAL COHPATIBILITY CARD 
4 1 0 1 0  $ B3:l HATERIAL TABLE; 1 SHELL WALL TYPE 
5 -0.0008 $ B5:FACTOR HIJLTIPLYIIG MODE SHAPE USED AS IMPERF. 
6 2000. 600. 8000. $ C1:LOAD FACTOR 
7 0 25000 10 -1 -1 $ D1:USE ARC LWGTH HETHOD 
a 45 13 $ F1:LEVEL OF DISCRETIZATION 
9 1 1 5 1 1 1 0 1  
10 2 $ G3: SET UP CONSTRAINT TO FORCE 
11 I 19 6 3 1.E7 $ G4: AITISYHHETRIC BUCKLE 
12 1 27 8 3 1.E7 $ G4: PATTERN 
13 1 0 $ 1l:HATERIAL TABLE IUHBER 
14 18.5E6 0.03027 0.83236 I. I. 1.6E6 0 $ 12:HATERIAL PROPERTIES 
15 1 1  1 6 0 0  $ K1:lS LAYERED PLATE 

$ G2:PARTIAL COHPATIBILITY IN U ALOBG TOP EDGE 

16 1 5.166833-3 -30.0 0 $ K2:LAYER 1 
17 16.165833-3 30.0 0 $ K2:LAYER 2 

19 1 5.16583E-3 -30.0 0 $ K2:LAYER 4 
20 1 5.16583E-3 30.0 0 $ K2:LAYER 5 
21 I 5.166833-3 -90.0 0 $ K2:LAYER 6 
22 15.16583E-3 -30.0 0 $ K2:LAYER 7 
23 1 5.16583E-3 30.0 0 $ K2:LAYER 8 
24 1 5.165833-3 -90.0 0 $ K2:LAYER 9 
26 I 5.16583E-3 -30.0 0 $ K2:LAYER 10 
26 1 5.16583E-3 30.0 0 $ K2:LAYER 11 
27 1 5.16583E-3 -90.0 0 $ K2:LAYER 12 
28 1 5.166833-3 -30.0 0 $ K2:LAYER 13 
29 I 6.16583E-3 30.0 0 $ K2:LAYER 14 
30 1 5.166833-3 -90.0 0 $ K2:LAYER 15 
31 2 0 $ H1:SELECT RECTANGULAR GEOHETRY 
32 0 .  20. 0 .  6.6 $ H2A:COMER COORDIIATES 
33 I O  0.0.0 0 $ H5:SHELL WALL RECORD 
34 411 8 5 0 0 
3s .376 2.805 4.41 2.41 2.41 4.41 2.805 .375 $ I2:SEGHEITS 11 X DIRECTION 
36 1 6 9  6 6 9 6  1 $ I3:ELEHEHTS PER SEGMENT 
37 .25 2. 1. 2. .25 $ I5:SEGHENTS 11 Y DIRECTIOI 
s 1 4 2 4 I $ H6:ELEHENTS PER SEGMENT 
39 0 3 2 3 0 
40 100 000 $ P2:U FREE OH TOP OF PLATE 
4 1 1 0 0  $ Q1:l LOAD SYSTEH 
4 2 1 6 0  $ 42:l LOAD SYSTEH, 5 LOAD CARDS 
4 3 1 . 1 1 1 5 0  $ q3:APPLIED MAD OH TOP OF PLATE 
440.-I32 0 $ q3:W=O 019 BOTTOH EDGE OF TOP CLAHPED SUPPORT 
45 0. -1 3 0 12 $ q3:V=O OM INSIDE EDGE OF RIGHT SIHPLE SUPPORT 
46 0 .  -1 3 44 0 $ q3:W=O 01 TOP EDGE OF BOTTOH CLAHPED SUPPORT 
47 0. -1 3 0 2 $ q3:W=O ON INSIDE EDGE OF LEFT SIHPLE SUPPORT 
413 I $ R1:PRINT DISPLACEHEITS OILY 

ia 1 5.16583E-3 -90.0 0 $ K2:LAYER 3 

$ I1:4-BODED QUAD ELEHEITS 

$ P1:DEFW BELoW/~COISTR/CL1PED/~COISTR 

Figure D.2. STAGS Input Data for [f30/90]5 5.5 Inch-Wide Panel 
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I NONLINEAR RUN. . . [+30/-30/9015 FLAT PLATE. . .7. IN 
2 3 1 1 0 0 0 1  $ B1:NONLINEAR RUN 
3 1 0  0 0 i o  I $ B2:l DISPL PARTIAL COMPAT 
4 1 0 1 0  $ B3:i MATERIAL TABLE; I SHELL WALL TYPE 
6 0.0008 $ B5:FACTOR MULTIPLYING MODE SHAPE USED AS IMPERF. 
6 2000. 500. 8000. $ C1:LOAD FACTOR 
7 0 99999 10 -1 -1 $ D1:USE ARC LENGTH METHOD 
8 39 13 $ F1:LEVEL OF DISCRETIZATIOI 
9 1 1 5 1 1 1 0 1  $ G2:PARTIAL COMPAT IN U ALONG TOP EDGE 
io I 0 $ 1I:MATERIAL TABLE NUMBER 
11 18.5E6 0.03027 0.832E6 1. 1. 1.6E6 0 $ 12:MATERIAL PROPERTIES 
12 1 1  1 5 0 0  $ K1:15 LAYERED PLATE 
13 I 5.25083E-3 -30.0 0 $ K2:LAYER I 
14 I 5.25083E-3 30.0 0 $ K2:LAYER 2 
15 15.25083E-3 -90.0 0 $ K2:LAYER 3 
16 I 5.25083E-3 -30.0 0 $ K2:LAYER 4 
17 I 5.25083E-3 30.0 0 $ K2:LAYER 5 
18 I 5.25083E-3 -90.0 0 $ K2:LAYER 6 
19 I 5.25083E-3 -30.0 0 $ K2:LAYER 7 
20 I 5.25083E-3 30.0 0 $ K2:LAYER 8 
21 I 5.25083E-3 -90.0 0 $ K2:LAYER 9 
22 I 5.250833-3 -30.0 0 $ K2:LAYER 10 
23 I 5.250833-3 30.0 0 $ K2:LAYER 11 
24 I 5.25083E-3 -90.0 0 $ K2:LAYER 12 
25 15.25083E-3 -30.0 0 $ K2:LAYER 13 
26 1 6.25083E-3 30.0 0 $ K2:LAYER 14 
27 15.25083E-3 -90.0 0 $ K2:LAYER 15 
28 2 0 
29 0 .  20. 0 .  7.0 $ M2A:CORNER COORDINATES 
30 1 0 0 .  0. 0 0 $ M5:SHELL WALL RECORD 

32 .375 4.125 2.29 3.21 3.21 2.29 4.125 .375 $ B2:SEGMEHTS IN X DIRECTION 
33 I 8 4  6 6 4 8 1 $ I3:ELEMENTS PER SEGMENT 
34 .25 .5 1.42 1.33 1.33 1.42 .5 .25 $ NS:SEGMENTS IN Y DIRECTION 
3 5 1 1 2 2  2 2 I I $ N6:ELEMENTS PER SEGMENT 
3 6 0 3 2 3 0  $ P1:DEFND BELOW/UICONSTR/CLAMPED/UICONSTR 
37 100 000 $ P2:U FREE ON TOP OF PLATE 
3 8 1 0 0  $ q1:i LOAD SYSTEM 
3 9 1 5 0  $ q2:l LOAD SYSTEM, 5 LOAD CARDS 
4 0 1 . 1 1 1 5 0  
41 0 .  -1 3 2 0 $ q3:W=O 01 BOTTOM EDGE OF TOP CLAMPED SUPPORT 
42 0 .  -1 3 0 12 $ q3:W=O ON INSIDE EDGE OF RIGHT SIMPLE SUPPORT 
43 0. -1 3 38 0 $ q3:W=O ON TOP EDGE OF BOTTOM CLAMPED SUPPORT 
44 0. -1 3 0 2 $ q3:W=O ON INSIDE EDGE OF LEFT SIMPLE SUPPORT 
45 I $ R1:PRINT DISPLACEMENTS OlLY 

$ M1:SELECT RECTANGULAR GEOMETRY 

31 411 8 8 0 0 $ NI:4-NODED QUAD ELEMENTS 

$ q3:APPLIED LOAD OI TOP OF PLATE 

Figure D.3. STAGS Input Data for [f30/90]5 7 Inch-Wide Panel 
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1 BONLIBEAR RUN ... [+60/-60/3616 FLAT PLATE ... 4 in 
2 3 1 1 0 0 0 1  $ B1:BONLIBEAR RUN 
3 i o  0 0 1 - 1  2 $ B2:i DISPL PARTIAL COMPAT 
4 1 0 1 0  $ B3:i MATERIAL TABLE; I SHELL WALL TYPE 
5 0. 0.008 $ B6:FACTOR MULTIPLYING (2ND) MODE SHAPE USED A IMPERF. 
6 2000. 600. 8000. $ C1:LOAD FACTOR 
7 0 26000 20 -1 -1 $ D1:USE ARC LENGTH METHOD 
a 63 11 $ F1:LEVEL OF DISCRETIZATION 
9 1 1 3 1 1 1 0 1  $ G2:PARTIAL COMPAT IB U ALONG TOP EDGE 
10 2 $ G3: SET UP CONSTRAINT TO 
11 I 31 6 3 1.E7 $ G4: FORCE SYMMETRIC BUCKLE 
12 I 33 7 3 -1.E7 $ 64: PATTERN 
13 1 0 $ 1I:MATERIAL TABLE NUMBER 
14 18.6E6 0.03027 0.83236 1. 1. 1.6E6 0 $ 12:MATERIAL PROPERTIES 
15 1 1 16 0 0 $ K1:IS LAYERED PLATE 
16 1 5.16417E-3 -60.0 0 $ K2:LAYER 1 
17 I 6.16417E-3 60.0 0 $ K2:LAYER 2 
18 16.16417E-3 -36.0 0 $ K2:LAYER 3 
19 16.16417E-3 -60.0 0 $ K2:LAYER 4 
20 I 6.16417E-3 60.0 0 $ K2:LAYER 6 
21 1 6.16417E-3 -36.0 0 $ K2:LAYER 6 
22 16.16417E-3 -60.0 0 $ K2:LAYER 7 
23 I 6.16417E-3 60.0 0 $ K2:LAYER 8 
24 16.16417E-3 -35.0 0 $ K2:LAYER 9 
25 I 6.16417E-3 -60.0 0 $ K2:LAYER 10 
26 I 6.16417E-3 6 0 . 0  0 $ K2:LAYER 11 
27 1 6.16417E-3 -36.0 0 $ K2:LAYER 12 
% 1 6.154173-3 -60.0 0 $ K2:LAYER 13 
29 1 6.16417E-3 60 .0  0 $ K2:LAYER 14 
30 I 6.15417E-3 -36.0 0 $ K2:LAYER I S  
31 2 0 $ M1:SELECT RECTANGULAR GEOMETRY 
32 0 .  20. 0 .  4. $ M2A:CORNER COORDINATES 
3 3 1 0 0 . 0 . 0 0  $ M6:SHELL WALL RECORD 
34 411 8 6 0 0 
35 .376 1.626 6.39 1.61 1.61 6.39 1.626 .376 $ N2:SEGIIENTS IN X DIRECTION 
36 1 6 18 6 6 18 6 1 $ N3:ELEMEYTS PER SEGMENT 
37 .26 .625 2.26 .626 .26 $ B6:SEGffiNTS I11 Y DIRECTION 
313 1 2 4 2 I $ B6:ELEMENTS PER SEGMENT 
39 0 3 2 3 0 $ P1:DEFND BELOW/U?iCONSTR/CLAMPED/UIICOBSTR 
40 100 000 $ P2:U FREE OH TOP OF PLATE 
4 1 1 0 0  $ q1:l LOAD SYSTEM 
4 2 1 6 0  $ 92: l  LOAD SYSTEM, 6 LOAD CARDS 
43 1 . 1  1 I 3 0 $ q3:APPLIED LOAD OH TOP CEHTER OF PLATE 
4 4 0 . - 1 3 2  0 $ Q3:W=O ON BOTTOM EDGE OF TOP CLAMPED SUPPORT 
45 0. -1 3 0 IO $ q3:V=O ON INSIDE EDGE OF RIGHT SIMPLE SUPPORT 
46 0. -1 3 62 0 $ q3:bO ON TOP EDGE OF BOTTOM CLAMPED SUPPORT 
47 0. -1 3 0 2 $ Q3:U=O ON INSIDE EDGE OF LEFT SIMPLE SUPPORT 
4 8 1 0 0  $ R1:PRINT DISPLACEHENTS 

$ 11:4-NODED qUAD ELEMENTS 

Figure D.4. STAGS Input Data for [f50/35]5 4 Inch-Wide Panel 
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1 NONLINEAR RUN ... [+50/-50/3515 FLAT PLATE. ..5.5 IN 
2 3 1 1 0 0 1 1  $ BI :MJNLINEAR RUN 
3 i o  0 0 1 - 1  I $ B2:l DISPL PARTIAL COMPAT 
4 1 0 1 0  $ B3:l MATERIAL TABLE; I SHELL WALL TYPE 
5 0.008 $ B5:FACTOR MULTIPLYING MODE SHAPE USED AS IMPERF. 
6 2000. 500. 8000. $ C1:LOAD FACTOR 
7 0 25000 10 -1 -1 $ D1:USE ARC LENGTH METHOD 
8 45 13 $ F1:LEVEL OF DISCRETIZATION 
9 1 1 5 1 1 1 0 1  
10 2 $ C3: SET UP CONSTRAINT TO 
11 1 19 6 3 1.E7 $ G4: FORCE ANTISYMMETRIC BUCKLE 
12 I 27 8 3 1.E7 $ 64: PATTERN 
13 I 0 $ 1I:MATERIAL TABLE NUMBER 
14 18.5E6 0.03027 0.832E6 I. 1.. 1.6E6 0 $ I2:MATERIAL PROPERTIES 
15 I 1  1 5 0 0  $ K1:15 LAYERED PLATE 
16 I 5.14333E-3 -50.0 0 $ K2:LAYER I 
17 I 6.14333E-3 50.0 0 $ K2:LAYER 2 
18 15.14333E-3 -35.0 0 $ K2:LAYER 3 
19 1 5.14333E-3 -50.0 0 $ K2:LAYER 4 
20 15.14333E-3 50.0 0 $ K2:LAYER 5 
21 I 5.14333E-3 -35.0 0 $ K2:LAYER 6 
22 I 5.14333E-3 -50.0 0 $ K2:LAYER 7 
23 15.14333E-3 50.0 0 $ K2:LAYER 8 
24 15.14333E-3 -35.0 0 $ K2:LAYER 9 
25 I 6.143333-3 -50.0 0 $ K2:LAYER 10 
26 1 5.143333-3 50.0 0 $ K2:LAYER 11 
27 I 5.14333E-3 -35.0 0 $ K2:LAYER 12 
23 I 5.14333E-3 -60.0 0 $ K2:LAYER 13 
29 15.14333E-3 50.0 0 $ K2:LAYER 14 
30 I 5.14333E-3 -35.0 0 $ K2:LAYER 15 
31 2 0 $ M1:SELECT RECTANGULAR GEOMETRY 
32 0 .  20. 0. 5.5 $ M2A:CORNER COORDINATES 
33 I 0 0. 0. 0 0 $ M5:SHELL WALL RECORD 
34 411 8 5 0 0 $ NI:4-NODED QUAD ELEMENTS 
35 .375 2.805 4.41 2.41 2.41 4.41 2.805 .375 $ N2:SEGMENTS IN X DIRECTION 
36 1 6 9  6 6 9 6  I $ N3:ELEMEIPTS PER SEGMENT 
37 .25 2. I. 2. .25 $ N5:SECMENTS IN Y DIRECTION 
33 1 4 2 4 I $ N6:ELEMENTS PER SEGMENT 
3 9 0 3 2 3 0  $ P1:DEFIOD BELOU/UNCONSTR/CLAHPED/UPCONSTR 
40 100 000 $ P2:U FREE ON TOP OF PLATE 
4 1 1 0 0  $ q1:l LOAD SYSTEM 
4 2 1 5 0  $ q2:l LOAD SYSTEM, 5 LOAD CARDS 
4 3 1 . 1 1 1 6 0  
44 0. -1 3 2 0 $ Q3:W=O ON BOTTOM EDGE OF TOP CLAMPED SUPPORT 
45 0. -1 3 0 12 $ q3:W=O ON INSIDE EDGE OF RIGHT SIMPLE SUPPORT 
46 0 .  -1 3 44 0 $ q3:W=O ON TOP EDGE OF BOTTOH CLAMPED SUPPORT 
47 0. -1 3 0 2 $ Q3:W=O ON INSIDE EDGE OF LEFT SIMPLE SUPPORT 
48 I $ R1:PRINT DISPLACEMENTS ONLY 

$ G2:PARTIAL COMPAT IN U ALONG TOP EDGE 

$ Q3:APPLIED LOAD OH TOP CENTER OF PLATE 

Figure D . 5 .  STAGS Input Data for [f50/35]5 5.5 Inch-Wide Panel 
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1 MONLINEAR RUN. . . [+60/-60/36] 6 FLAT PLATE. . .7. 11 
2 3 1 1 0 0 0 1  $ BI :NONLINEAR RUM 
3 1 0 0 0 1 0 1  $ B2:l DISPL PARTIAL COMPAT 
4 1 0 1 0  $ B3:l MATERIAL TABLE; I SHELL WALL TYPE 
5 0.0008 $ B6:FACTOR MULTIPLYING MODE SHAPE USED AS IMPERF. 
6 2000. 500. 8000. $ Cl :LOAD FACTOR 
7 0 26000 10 -1 -1 $ D1:USE ARC LENGTH METHOD 
8 39 13 $ F1:LEVEL OF DISCRETIZATION 
9 1 1 6 1 1 1 0 1  $ G2:PARTIAL COMPAT IN U ALOHG TOP EDGE 
io I 0 $ 1l:MATERIAL TABLE NUMBER 
11 18.6E6 0.03027 0.83236 I. I. 1.6E6 0 $ 12:MATERIAL PROPERTIES 
1 2 1 1 1 6 0 0  $ K1:IS LAYERED PLATE 
13 1 6.20083E-3 -60.0 0 $ K2:LAYER 1 
14 15.200833-3 60.0 0 $ K2:LAYER 2 
15 15.200833-3 -36.0 0 $ K2:LAYER 3 
16 I 5.200833-3 -60.0 0 $ K2:LAYER 4 
17 I 6.20083E-3 60.0 0 $ K2:LAYER 6 
18 16.20083E-3 -36.0 0 $ K2:LAYER 6 
19 1 5.200833-3 -60.0 0 $ K2:LAYER 7 
20 15.200833-3 60.0 0 $ K2:LAYER 8 
21 I 5.200833-3 -36.0 0 $ K2:LAYER 9 
22 1 5.200833-3 -60.0 0 $ K2:LAYER 10 
23 1 5.20083E-3 60.0 0 $ K2:LAYER I 1  
24 I 6.200833-3 -36.0 0 $ K2:LAYER 12 
25 1 5.200833-3 -60.0 0 $ K2:LAYER 13 
26 1 6.20083E-3 60.0 0 $ K2:LAYER 14 
27 I 6.20083E-3 -36.0 0 $ K2:LAYER 16 
23 2 0 $ M1:SELECT RECTANGULAR GEOMETRY 
29 0 .  20. 0 .  7.0 $ M2A:CORNER COORDIHATES 
30 1 0 0 .  0 .  0 0 $ M6:SHELL WALL RECORD 
31 411 8 8 0 0 
32 .376 4.126 2.29 3.21 3.21 2.29 4.126 .376 
3 3 1  8 4  6 6 4 8 I $ H3:ELEMENTS PER SEGMENT 
34 .26 .6 1.42 1.33 1.33 1.42 .6 .26 $ N6:SEGMENTS IIP Y DIRECTION 
3 5 1 1 2 2  2 2 1 I $ H6:ELEMEIOTS PER SEGMENT 
36 0 3 2 3 0 
37 100 000 $ P2:U FREE ON TOP OF PLATE 
3 8 1 0 0  $ q1:l LOAD SYSTEM 
3 9 1 6 0  $ q2:l LOAD SYSTEM, 6 LOAD CARDS 
4 0 1 . 1 1 1 6 0  
41 0 .  -1 3 2 0 $ q3:U=O OR BOTTOM EDGE OF TOP CLAHPED SUPPORT 
42 0 .  -1 3 0 12 $ q3:U=O ON INSIDE EDGE OF RIGHT SIMPLE SUPPORT 
43 0. -1 3 38 0 $ q3:U=O ON TOP EDGE OF BOTTOM CLAMPED SUPPORT 
44 0. -1 3 0 2 $ q3:W=O ON INSIDE EDGE OF LEFT SIMPLE SUPPORT 
45 I $ R1:PRINT DISPLACEMENTS OILY 

$ Il:4-NODED QUAD ELEMENTS 
$ H2:SEGMEBk III X DIRECTION 

$ P1:DEFlJD BELOW/WCOASTR/CLAMPED/WCOHSTR 

$ q3:APPLIED LOAD ON TOP CENTER OF PLATE 

Figure D.6. STAGS Input Data for [f50/35]5 7 Inch-Wide Panel 
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Plate Geometry: 

e 

I I 
a 

N 1  1 /* 
, 

Load, Displacement, Force, And 

Moment Resultait Conventions 

Figure 2.1. Conventions Used In 

Theoretical Development 
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Deformed C o n f i g u r a t i o n  
-----_- Undeformed C o n f i g u r a t i o n  

- /  I I 

Nx - -I : 
f - I  I 

I j / I N x  - 
I 

F i g u r e  2.2. E f f e c t  o f  Shear-Extensional  Coupl ing 

On Panel Subjected t o  Un i fo rm A x i a l  

Load i ng 

Note Skewing o f  Nodal L ines  

Figure 2.3. Effect of Shear-Extensional Coupling on Postbuckled Shape 
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Load I 

sting 

Transverse Di spl acement 

Location of1 Displacement 
Transducers in Reflectional ly 

Symmetric Positions 

Typical Results From Such 
Measurements 

FIGURE 2,4, METHOD FOR OBSERVING TWISTING 
BEHAVIOR DURING AN  EXPERIMENT 

132 



TRANSVERSE LOADING PROBLEMS : 

w = 4 2  

/ P = 0.1 psi uniform I 

AXIAL LOADING PROBLEMS: 

I w = o  

Nx = 50 lb/in 
( u1 = constant o )  

U2 = w = $1 = $2  = 

X 1  
--------c 

w = o  

FIGURE 4,1, S C H E M A T I C S  FOR LINEAR PROBLEMS 
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H a l f  t he  panel i s  modeled: 

1 
I 
I 
I 
I 

Node group 1 I 
I 
I 
I 
I - u, - u2 = = $2 = 0. Center o f  Panel 

Node group 2 

h 

For a x i a l  l o a d i n g  

prob 1 ems, 

u1 = cons tan t  

a long t h i s  edge. 
b 

1 .  Node group 1 i s  r e l a t e d  t o  node group 2 by the  symmetry 

r e l a t i o n s  o f  Chapter 2 and i s  t h e r e f o r e  n o t  modeled. 

2. L e f t  h a l f  o f  panel i s  r e l a t e d  t o  r i g h t  h a l f  by t h e  

symmetry r e l a t i o n s  o f  Chapter 2 and i s  n o t  e x p l i c i t l y  

mode 1 ed . 
3. Boundary c o n d i t i o n s  a r e  imposed as desc r ibed  i n  t h e  

p rev ious  f i g u r e  f o r  t h e  t h r e e  e x t e r i o r  edges, except 

as noted i n  t h e  above f i g u r e .  

I 

F i g u r e  4.2. Schematic o f  Mixed Fo rmu la t i on  F i n i t e  Element Models 

134 



= 4.80X10-2 i n .  ma x 
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0.0 0.2 0.4 0.6 0.8 1.0 

X 

4 

-8- 
\ 
-8- 
4 

$;lax = 8.18X10-3 

0.0 0.2 0.4 0.6 0.8 1.0 

CL EDGE CL EDGE 

Normalized Distance Along Long Panel Centerline 

LEGEND 

o Mixed Formulation Finite Element Solution 
-- Rayleigh Ritz Solution, 3 Terms 
- - - - -  Rayleigh Ritz Solution, 9 Terms 
- - ._-  Rayleigh Ritz Solution, 19 Terms 

Rayleigh Ritz Solution, 33 Terms 
- - - -  Rayleigh Ritz Solution, 51 Terms 

0 Only w and 41. are shown since u and v are zero 
at all points, and b2 is zero along the long centerline. 

Figure 4.3. Linear Results for Simply Supported 
Transversely Loaded [04/904]s Panel 

135 



max - - 5  * u - 2.02 X 10 i n .  

1.0 

1.2 I I I I 

1.0- 00" 
0.8 - oooo - 
0.6 - oOOo 

oOOo 

0. &>, I , I , , ,- 

O0 

00 - 
oOOo 

00" 0.4 - 
0.2 - 

- 
00 

oooo 
- 

0 

EDGE 
max - C L  

W - 7.41 X i n .  

0.0 0.2 0.4 0.8 0.8 1.0 

C L  EDGE 

max = 1.74 x 10-3 
$1 

C L  EDGE 

X 

E < > 

I LEGEND 

o Mixed Formulation 
Finite Element Solution 

-- Rayleigh Ritz Solution, 18 Terms 
_ _ - . _ .  Rayleigh Ritz Solution, 36 Terms 
- - - - -  Rayleigh Ritz Solution, 66 Terms 

Rayleigh Ritz Solution, 102 Terms 
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-8. 
\ 
-8. 
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CL EDGE 

Normalized Distance Along Long Panel Centerline 

Figure 4.4. Linear Results for Simply Supported 
Transversely Loaded [f50/35]5 Panel 
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Normalized Distance Along Panel Centerlines 

LEGEND 

o Mixed Formulation Finite Element Solution 
-- Rayleigh Ritz Solution, 9 Terms 
- - - - -  Rayleigh Ritz Solution, 19 Terms 
- .__- Rayleigh Ritz Solution, 33 Terms 

Rayleigh Ritz Solution, 5! Terms 
0 u is plotted down the long panel centerline, 

and v is plotted down the short centerline. 
0 Only u and v are shown since all other 

displacements are zero at all points. 

EDGE 

Figure 4.5. Linear Results for Clamped/Simply Supported 
Axially Loaded [O4/9O4Is Panel 
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= 1.78 X i n .  ma x 
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LEG END 

o Mixed Formulation 
Finite Element Solution 

- - Rayleigh Ritz Solution, 18 Terms 
- - - - - Rayleigh Ritz Solution, 38 Terms 
- . . . -  Rayleigh Ritz Solution, 66 Terms 

Ravleiah Ritz Solution, 102 Terms 
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Figure 4.6. Linear Results for Clamped/Simply Supported 
Axially Loaded [f50/35]5 Panel 
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u1 Displacement 

/-- 

u2 Displacement 

Figure 4.7. Contour Plots of Linear Solution For Axially Loaded 
Clamped/Simply Supported [ f50/35]5 Panel 
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- 

LEGEND 

a Rayleigh Ritz Solution, 19 Terms 
b -- - - - Rayleigh Ritz Solution, 33 Terms 
c - - Mixed Formulation Finite Element Solution 
d - - - STAGS Solution 
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LEGEND 

a Rayleigh Ritz Solution, 19 Terms 
b - - - - - Rayleigh Ritz Solution, 33 Terms 
c - - Mixed Formulation Finite Element Solution 
d - -  - STAGS Solution 

Figure 4.9. Center Transverse Displacement Behavior, [04/90415 Panel 
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STAGS Results at P = 4347 Ib 
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Figure 4.10. Normalized Contour Plots of Transverse 
Displacement, [04/904] Panel 
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Figure 4.1 1. End Shortening Behavior, [f30/90]5 Panel 
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LEGEND 

a Rayleigh Ritz Solution, 38 Terms 
b - - - - . Rayleigh Ritz Solution, 66 Terms 
c - - Mixed Formulation Finite Element Solution 
d - - -STAGS Solution 
e - - - - Experiment 

Figure 4.1 2. Center Transverse Displacement Behavior, [ f30/90]5 Panel 
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STAGS Results at P = 7100 ib 

Rayieigh-Ritz hesuits at P = 7137 Ib 

Figure 4.1 3. Normalized Contour Plots of Transverse 
Displacement, [f30/90]5 Panel 
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End Shorten lng ,  in. 

LEGEND 

a Rayleigh Ritz Solution, 38 Terms 
b - - - -  - - Rayleigh Ritz Solution, 66 Terms 
c - - Mixed Formulation Finite Element Solution 
d - - -STAGS Solution 
e - -- - Experiment 

Figure 4.14. End Shortening Behavior, [&50/35]5 Panel 
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d - - -STAGS Solution 
e - - - -Experiment 

Figure 4.15. Center Transverse Displacement Behavior, [f50/35]5 Panel 
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Rayleigh-Ritz Results at P = 6325 Ib 

Figure 4.1 6. Normalized Contour Plots of Transverse 
Displacement, [f50/35]5 Panel 
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lines indicated. 
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Figure 5.6. Undeformed Geometry Plot of STAGSC-1 Finite 
Element Model for 5.5” [f50/35]5 Panel 
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. 

0 . ' ~ ~ ~ ' ~ ' " ' ~ ~ ~ ' ' ~ ' ' ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '  
0.00 0.05 0.10 0.15 0.20 0.25 0.30 

a. [*30/90], 4 in. 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 

a. [330/90], 5.5 in. 

10.1 I I I I I 1 

0. 
0.00 0.05 0.10 0.15 0.20 0.25 0.SO 

b. [*50/35], 4 In. 

0. 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 

d. [f50/35], 5.5 in. 

e. [f30/90], 7 in. f. (k50/35], 7 in. 

Absolute Value of Transverse Displacement, in. 

LEG END 

0 Displacements are plotted at two 
reflectionally symmetric points as shown. 

0 Horizontal lines indicate estimated buckling loads. 

Figure 5.11. Experimental Twisting Results 
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Figure 5.1 2. STAGSC-1 Twisting Results 
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